Evaluation of Datalog

Alice: I don’t mean to sound naive, but isn’t it awfully expensive to answer
datalog queries?
Riccardo: Not if you use the right bag of tricks . . .
Vittorio: ... and some magical wisdom.
Sergio: Well, there is no real need for magic. We will see that the evaluation is
much easier if the algorithm knows where it is going and takes advantage
of this knowledge.

he introduction of datalog led to a flurry of research in optimization during the late

1980s and early 1990s. A variety of techniques emerged covering a range of different
approaches. These techniques are usually separated into two classes depending on whether
they focus on top-down or bottom-up evaluation. Another key dimension of the techniques
concerns whether they are based on direct evaluation or propose some compilation of the
query into a related query, which is subsequently evaluated using a direct technique.

This chapter provides a brief introduction to this broad family of heuristic techniques.
A representative sampling of such techniques is presented. Some are centered around
an approach known as “Query-Subquery”; these are top down and are based on direct
evaluation. Others, centered around an approach called “magic set rewriting,” are based
on an initial preprocessing of the datalog program before using a fairly direct bottom-up
evaluation strategy.

The advantage of top-down techniques is that selections that form part of the initial
query can be propagated into the rules as they are expanded. There is no direct way to take
advantage of this information in bottom-up evaluation, so it would seem that the bottom-
up technique is at a disadvantage with respect to optimization. A rather elegant conclusion
that has emerged from the research on datalog evaluation is that, surprisingly, there are
bottom-up techniques that have essentially the same running time as top-down techniques.
Exposition of this result is a main focus of this chapter.

Some of the evaluation techniques presented here are intricate, and our main emphasis
is on conveying the essential ideas they use. The discussion is centered around the pre-
sentation of the techniques in connection with a concrete running example. In the cases of
Query-Subquery and magic sets rewriting, we also informally describe how they can be ap-
plied in the general case. This is sufficient to give a precise understanding of the techniques
without becoming overwhelmed by notation. Proofs of the correctness of these techniques
are typically lengthy but straightforward and are left as exercises.

311

312 Evaluation of Datalog

up flat down
a e g f L f
a f m n m f
f m m o g b
g n p m h ¢
h n i d
i o p k
j o
(a) The instance (b) Represented as a graph

Figure 13.1: Instance Iy for RSG example

13.1 Seminaive Evaluation

The first stop on our tour of evaluation techniques is a strategy for improving the effi-
ciency of the bottom-up technique described in Chapter 12. To illustrate this and the other
techniques, we use as a running example the program “Reverse-Same-Generation” (RSG)
given by

rsg(x,y) < flat(x, y)
rsg(x,y) < up(x,x1), rsg(yl, x1), down(yl, y)

and the sample instance Iy illustrated in Fig. 13.1. This is a fairly simple program, but it
will allow us to present the main features of the various techniques presented throughout
this chapter.

If the bottom-up algorithm of Chapter 12 is used to compute the value of rsg on input
I, the following values are obtained:

level 0: @

level I {(g, f), (m, n), (m, 0), (p, m)}

level 2: {level 1} U {(a, b), (h, f), (i,), (J,), ([, k)}
level 3: {level 2} U {{(a, ¢), (a, d)}

level 4: {level 3}

at which point a fixpoint has been reached. It is clear that a considerable amount of
redundant computation is done, because each layer recomputes all elements of the previous
layer. This is a consequence of the monotonicity of the Tp operator for datalog programs P.
This algorithm has been termed the naive algorithm for datalog evaluation. The central idea
of the seminaive algorithm is to focus, to the extent possible, on the new facts generated at
each level and thereby avoid recomputing the same facts.

Consider the facts inferred using the second rule of RSG in the consecutive stages of

13.1 Seminaive Evaluation 313

the naive evaluation. At each stage, some new facts are inferred (until a fixpoint is reached).
To infer a new fact at stage i 4 1, one must use at least one fact newly derived at stage i.
This is the main idea of seminaive evaluation. It is captured by the following “version” of
RSG, called RSG’:

Age(x, y) < flat(x, y)
Ai+1(x, y) < up(x, x1), Al (y1, x1), down(yl, y)

rsg rsg
where an instance of the second rule is included for each i > 1. Strictly speaking, this is
not a datalog program because it has an infinite number of rules. On the other hand, it is
not recursive. .

Intuitively, A’mg contains the facts in rsg newly inferred at the ith stage of the naive
evaluation. To see this, we note a close relationship between the repeated applications of
Tgsc and the values taken by the Aj,. Let I be a fixed input instance. Then

o fori >0, let rsg’ = The(D(rsg) (ie., the value of rsg after i applications of Tgsg

on I); and

* for i.Z 1, let &,

fixpoint on I).
It is easily verified for each i > 1 that Ty, (I)(A},) =@ and Ty (D(Aj,) = . Fur-
thermore, for each i > 0 we have

= RSG'(I)(AL_) (i.e., the value of Aisg when Tggs reaches a

rsg

rsg' ™t — rsg' € 8@1 Crsg'tl.

Therefore RSG(I)(rsg) = Ui<i(8},). Furthermore, if j satisfies 8}, C Uic;dl,,
then RSG()(rsg) = U; < jS;Sg, that is, only j levels of RSG’ need be computed to find
RSG()(rsg). Importantly, bottom-up evaluation of RSG’ typically involves much less re-
dundant computation than direct bottom-up evaluation of RSG.

Continuing with the informal development, we introduce now two refinements that
further reduce the amount of redundant computation. The first is based on the observation
that when executing RSG’, we do not always have 8it! = rsg'*! — rsg’. Using Ip, we
have (g, f) € 5r2xg but not in rsg? — rsg'. This suggests that the efficiency can be further
improved by using rsg’ — rsg'~! in place of Aisg in the body of the second “rule” of RSG'.
Using a pidgin language that combines both datalog and imperative commands, the new
version RSG” is given by

Aisg(x’ y) <« flat(x,y) }
rsg! = Al

rsg

tempijél(x,y) <~ up(x,xl),Ai (y1, x1), down(yl, y)

rsg

i+1 — i+1 i
Arsg = temprsg —Isg
rsgitl = rsgl UAH]

rsg

(where an instance of the second family of commands is included for each i > 1).

314 Evaluation of Datalog

The second improvement to reduce redundant computation is useful when a given idb
predicate occurs twice in the same rule. To illustrate, consider the nonlinear version of the
ancestor program:

anc(x,y) < par(x,y)
anc(x, y) < anc(x, z), anc(z, y)

A seminaive “version” of this is

Azlmc(x’y) <~ Par(X,y)}
anc! = Aclmc

tempifl(x,y) <« Al,.(x,2), anc(z, y)
temp'tl(x,y) <« anc(x,z), Al (z,)
Aitl = templfl —anc’

i1

— i i+1
anc = anc' UA.

Note here that both Al . and anc' are needed to ensure that all new facts in the next level
are obtained.

Consider now an input instance consisting of par(1, 2), par(2, 3). Then we have

Abe=1(1,2),(2,3)}
anc' = {(1,2), (2,3)}
A2, ={(1,3)}

Furthermore, both of the rules for tempgnc will compute the join of tuples (1, 2) and (2, 3),
and so we have a redundant computation of (1, 3). Examples are easily constructed where
this kind of redundancy occurs for at an arbitrary level i > 0 (see Exercise 13.2).
An approach for preventing this kind of redundancy is to replace the two rules for
temp't1 by
tempH'l(x, y) <« Aimc(x, 2), anc' 71 (z, y)

i+1

temp' 1 (x, y) < anc'(x,z), AL,.(z,)

This approach is adopted below.

We now present the seminaive algorithm for the general case. Let P be a datalog
program over edb R and idb T. Consider a rule

S(H) <~ Rl(vl)v R Rn(vn)» T](U)]), LA} Tm(wm)

in P, where the R;’s are edb predicates and the T’s are idb predicates. Construct for each
je€ll,m]andi > 1 the rule

13.1 Seminaive Evaluation 315
temps™ () < Ri(v1), ..., Ru(vp),
i), Ty wjm) A W), Ti W), T (w).

Let Psi‘ represent the set of all i-level rules of this form constructed for the idb predicate S
i+1

(i.e., the rules for temps", j in [1, m]).
Suppose now that Ty, ..., 7; is a listing of the idb predicates of P that occur in the

body of a rule defining S. We write
Pe T T T T AL A

to denote the set of tuples that result from applying the rules in P§ to given values for input
instance I and for the T;_l, T;, and AiTj.
We now have the following:

ALGORITHM 13.1.1 (Basic Seminaive Algorithm)
Input: Datalog program P and input instance I
Output: P(I)

1. Set P’ to be the rules in P with no idb predicate in the body;
2. 89 .= @, for each idb predicate S;
3. AIS := P'(I)(S), for each idb predicate S;

4.i:=1,;
5. do begin
for each idb predicate S, where T1, ..., T;
are the idb predicates involved in rules defining S,
begin
Si=5uAg L
AG =P T T T T A A = ST
end;
=141
end

until A’ = ¢ for each idb predicate S.
6. s :=s', for each idb predicate S. ®

The correctness of this algorithm is demonstrated in Exercise 13.3. However, it is
still doing a lot of unnecessary work on some programs. We now analyze the structure
of datalog programs to develop an improved version of the seminaive algorithm. It turns
out that this analysis, with simple control of the computation, allows us to know in advance
which predicates are likely to grow at each iteration and which are not, either because they
are already saturated or because they are not yet affected by the computation.

Let P be a datalog program. Form the precedence graph Gp for P as follows: Use
the idb predicates in P as the nodes and include edge (R, R’) if there is a rule with head
predicate R’ in which R occurs in the body. P is recursive if Gp has a directed cycle. Two
predicates R and R’ are mutually recursive if R = R’ or R and R’ participate in the same

316 Evaluation of Datalog

cycle of Gp. Mutual recursion is an equivalence relation on the idb predicates of P, where
each equivalence class corresponds to a strongly connected component of Gp. A rule of P
is recursive if the body involves a predicate that is mutually recursive with the head.

We now have the following:

ALGORITHM 13.1.2 (Improved Seminaive Algorithm)

Input: Datalog program P and edb instance I
Output: P(I)

1. Determine the equivalence classes of idb(P) under mutual recursion.

2. Construct a listing [R1], . .., [R,] of the equivalence classes, according to a topo-
logical sort of Gp (i.e., so that for each pair i < j there is no path in Gp from R;
to R;).

3. Fori=1tondo
Apply Basic Seminaive Algorithm to compute the values of predicates in [R;],
treating all predicates in [R;], j < i, as edb predicates. M

The correctness of this algorithm is left as Exercise 13.4.

Linear Datalog

We conclude this discussion of the seminaive approach by introducing a special class of
programs.

Let P be a program. A rule in P with head relation R is linear if there is at most
one atom in the body of the rule whose predicate is mutually recursive with R. P is linear
if each rule in P is linear. We now show how the Improved Seminaive Algorithm can be
simplified for such programs.

Suppose that P is a linear program, and

p:Rw) < Ti(v1), ..., Ty(vy)
isarule in P, where T is mutually recursive with R. Associate with this the “rule”
A W) < Ti (o), .. ., A"Tj(uj), vy Tu(n).
Note that this is the only rule that will be associated by the Improved Seminaive Algorithm
with p. Thus, given an equivalence class [T¢] of mutually recursive predicates of P, the
rules for pyedicates S in [Ty] use only the A%, but not the S*. In contrast, as seen earlier,
both the A5 and S must be used in nonlinear programs.

13.2 Top-Down Techniques

Consider the RSG program from the previous section, augmented with a selection-based
query:

13.2 Top-Down Techniques 317

rsg(x, y) < flat(x, y)
rsg(x,y) < up(x,x1), rsg(yl, x1), down(yl, y)
query(y) < rsg(a, y)

where a is a constant. This program will be called the RSG query. Suppose that seminaive
evaluation is used. Then each pair of rsg will be produced, including those that are not
used to derive any element of query. For example, using Iy of Fig. 13.1 as input, fact
rsg(f, k) will be produced but not used. A primary motivation for the top-down approaches
to datalog query evaluation is to avoid, to the extent possible, the production of tuples that
are not needed to derive any answer tuples.

For this discussion, we define a datalog query to be a pair (P, q), where P is a datalog
program and g is a datalog rule using relations of P in its body and the new relation query
in its head. We generally assume that there is only one rule defining the predicate query,
and it has the form

query(u) <= R(v)

for some idb predicate R.

A fact is relevant to query (P, g) on input I if there is a proof tree for guery in which
the fact occurs. A straightforward criterion for improving the efficiency of any datalog
evaluation scheme is to infer only relevant facts. The evaluation procedures developed in
the remainder of this chapter attempt to satisfy this criterion; but, as will be seen, they do
not do so perfectly.

The top-down approaches use natural heuristics to focus attention on relevant facts. In
particular, they use the framework provided by SLD resolution. The starting point for these
algorithms (namely, the query to be answered) often includes constants; these have the
effect of restricting the search for derivation trees and thus the set of facts produced. In the
context of databases without function symbols, the top-down datalog evaluation algorithms
can generally be forced to terminate on all inputs, even when the corresponding SLD-
resolution algorithm does not. In this section, we focus primarily on the query-subquery
(QSQ) framework.

There are four basic elements of this framework:

1. Use the general framework of SLD resolution, but do it set-at-a-time. This permits
the use of optimized versions of relational algebra operations.

2. Beginning with the constants in the original query, “push” constants from goals to
subgoals, in a manner analogous to pushing selections into joins.

3. Use the technique of “sideways information passing” (see Chapter 6) to pass
constant binding information from one atom to the next in subgoals.

4. Use an efficient global flow-of-control strategy.

Adornments and Subqueries

Recall the RSG query given earlier. Consider an SLD tree for it. The child of the root would
be rsg(a, y). Speaking intuitively, not all values for rsg are requested, but rather only those

318 Evaluation of Datalog

with first coordinate a. More generally, we are interested in finding derivations for rsg
where the first coordinate is bound and the second coordinate is free. This is denoted by
the expression rsg®/, where the superscript ‘bf” is called an adornment.

The next layer of the SLD tree will have a node holding flat(a, y) and a node holding
up(a,x1), rsg(yl, x1), down(yl, y). Answers generated for the first of these nodes are
given by mp(0 = <o (flat)). Answers for the other node can be generated by a left-to-right
evaluation. First the set of possible values for x1 is J = m3(01 = <o’ (up)). Next the possible
values for yl are given by {yl | (yl,x1) € rsg and (x1) € J} (i.e., the first coordinate
values of rsg stemming from second coordinate values in J). More generally, then, this
calls for an evaluation of rsgf b where the second coordinate values are bound by J.
Finally, given yl values, these can be used with down to obtain y values (i.e., answers
to the query).

As suggested by this discussion, a top-down evaluation of a query in which con-
stants occur can be broken into a family of “subqueries” having the form (RY, J), where
y is an adornment for idb predicate R, and J is a set of tuples that give values for the
columns bound by y. Expressions of the form (R”, J) are called subqueries. If the RSG
query were applied to the instance of Fig. 13.1, the first subquery generated would be
(rsg’®, {{e), (f)}). As we shall see, the QSQ framework is based on a systematic evalu-
ation of subqueries.

Let P be a datalog program and I an input instance. Suppose that R is an idb predicate
and y is an adornment for R (i.e., a string of b’s and f’s having length the arity of R). Then
bound (R, y) denotes the coordinates of R bound in y. Let ¢ be a tuple over bound (R, y).
Then a completion for t in R is a tuple s such that s[bound(R, y)] =t and s € P(I)(R).
The answer to a subquery (RY, J) over I is the set of all completions of all tuples in J.

The use of adornments within a rule body is a generalization of the technique of
sideways information passing discussed in Chapter 6. Consider the rule

*) R(x,y,2) < Ri(x,u,v), Ro(u, w, w, z), R3(v, w, y, a).

Suppose that a subquery involving R”? is invoked. Assuming a left-to-right evaluation, this
will lead to subqueries involving Ri’ﬂ s Rlzjﬁ% , and Rgbﬂ’ . We sometimes rewrite the rule as

Rbfb(x, v, 27) < R?ﬁ(x, u,v), R;ﬁb(u, w,w,), R];bfb(v, w,y,a)

to emphasize the adornments. This is an example of an adorned rule. As we shall see, the
adornments of idb predicates in rule bodies shall be used to guide evaluations of queries
and subqueries. It is common to omit the adornments of edb predicates.

The general algorithm for adorning a rule, given an adornment for the head and an
ordering of the rule body, is as follows: (1) All occurrences of each bound variable in
the rule head are bound, (2) all occurrences of constants are bound, and (3) if a variable
x occurs in the rule body, then all occurrences of x in subsequent literals are bound.
A different ordering of the rule body would yield different adornments. In general, we
permit different orderings of rule bodies for different adornments of a given rule head. (A
generalization of this technique is considered in Exercise 13.19.)

The definition of adorned rule also applies to situations in which there are repeated

13.2 Top-Down Techniques 319

variables or constants in the rule head (see Exercise 13.9). However, adornments do not
capture all of the relevant information that can arise as the result of repeated variables
or constants that occur in idb predicates in rule bodies. Mechanisms for doing this are
discussed in Section 13.4.

Supplementary Relations and QSQ Templates

A key component of the QSQ framework is the use of QSQ templates which store appropri-
ate information during intermediate stages of an evaluation. Consider again the preceding
rule (*), and imagine attempting to evaluate the subquery (R?”, J). This will result in calls
to the generalized queries (Rf‘ ,m1(J)), (Rgﬁ% , K), and (R;’hﬂ? , L) for some relations K
and L that depend on the evaluation of the preceding queries. Importantly, note that rela-
tion K relies on values passed from both J and R, and L relies on values passed from
R and R;. A QSQ template provides data structures that will remember all of the values
needed during a left-to-right evaluation of a subquery.

To do this, QSQ templates rely on supplementary relations. A total of n 4 1 supple-
mentary relations are associated to a rule body with n atoms. For example, the supplemen-
tary relations supy, . . . , sups for the rule (*) with head adorned by RY% are

Rbﬂ’(x, v, 2) < Rfﬁ.(x, u,v), Rgﬁb(u, w,w, 7), Rgbﬂ?(v, w,y,a)
t T 1 t

supolx, z] sup[x,z,u,v] sup,[x,z,v, w] sups[x,y,z]

Note that variables serve as attribute names in the supplementary relations. Speaking in-
tuitively, the body of a rule may be viewed as a process that takes as input tuples over the
bound attributes of the head and produces as output tuples over the variables (bound and
free) of the head. This determines the attributes of the first and last supplementary relations.
In addition, a variable (i.e., an attribute name) is in some supplementary relation if it is has
been bound by some previous literal and if it is needed in the future by some subsequent
literal or in the result.

More formally, for a rule body with atoms Aj, ..., A,, the set of variables used as
attribute names for the i supplementary relation is determined as follows:

* For the O™ (i.e., zeroth) supplementary relation, the attribute set is the set Xq of
bound variables of the rule head; and for the last supplementary relation, the attribute
set is the set X, of variables in the rule head.

e Fori € [1,n — 1], the attribute set of the i™ supplementary relation is the set X; of

variables that occur both “before” X; (i.e., occur in Xq, Ay, ..., A;) and “after” X;
(i.e., occurin Ajy1, ..., Ay, Xp).
The QSQ template for an adorned rule is the sequence (supy, ..., sup,) of relation

schemas for the supplementary relations of the rule. During the process of QSQ query
evaluation, relation instances are assigned to these schemas; typically these instances
repeatedly acquire new tuples as the algorithm runs. Figure 13.2 shows the use of QSQ
templates in connection with the RSG query.

320 Evaluation of Datalog

rsg”(x,) rsg”(x,)
flat(x, y) up(x, x,), rsg’(y,, x,), down(y,, y)
supy[x] supi[x, y] supy[x] supilx, x,] sup3[x, y,1 supi[x, y]
a a a e a g a b
a f
rsg/’(x,) rsg/’(x,)
ﬂa[(x y) dOW"(yp) VSgbf(yp x])’ up(x) x])
supily supilx, y] supy[y] supily, 1 sup3ly, x,1 sup3lx, y]
e g f e f 1
f f fom
input_rsg” input_rsg/ ans_rsg"f ans_rsg’
a e a b g f
f

Figure 13.2: Illustration of QSQ framework

The Kernel of QSQ Evaluation

The key components of QSQ evaluation are as follows. Let (P, g) be a datalog query and
let I be an edb instance. Speaking conceptually, QSQ evaluation begins by constructing
an adorned rule for each adornment of each idb predicate in P and for the query g. In
practice, the construction of these adorned rules can be lazy (i.e., they can be constructed
only if needed during execution of the algorithm). Let (P?, g*¢) denote the result of this
transformation.

The relevant adorned rules for the RSG query are as follows:

1. rsg? (x, y) < flat(x, y)
2. rsg(x, y) < flat(x, y)

13.2 Top-Down Techniques 321

3. rsgbf(x, y) < up(x, x1), rsgfb(yl, x1), down(yl, y)
4. rsgfb(x, y) < down(yl,y), rsgbf(yl,xl), up(x, x1).

Note that in the fourth rule, the literals of the body are ordered so that the binding of y in
down can be “passed” via y1 to rsg and via x1 to up.

A QSQ template is constructed for each relevant adorned rule. We denote the ;™
(counting from 0) supplementary relation of the i™ adorned rule as sup!. In addition, the
following relations are needed and will serve as variables in the QSQ evaluation algorithm:

(a) for each idb predicate R and relevant adornment y the variable ans_RY, with
same arity as R;

(b) for each idb predicate R and relevant adornment y, the variable input_RY with
same arity as bound(R, y) (i.e., the number of b’s occurring in y); and

(c) for each supplementary relation supji , the variable supji.

Intuitively, input_ R will be used to form subqueries (R, input_R"). The completion
of tuples in input_R? will go to ans_RY . Thus ans_RY will hold tuples that are in P (I)(R)
and were generated from subqueries based on RY.

A QSQ algorithm begins with the empty set for each of the aforementioned relations.
The query is then used to initialize the process. For example, the rule

query(y) <—rsg(a, y)

gives the initial value of {(a)} to input_rsg’’. In general, this gives rise to the subquery
(RY, {t}), where ¢ is constructed using the set of constants in the initial query.

There are essentially four kinds of steps in the execution. Different possible orderings
for these steps will be considered. The first of these is used to initialize rules.

(A) Begin evaluation of a rule: This step can be taken whenever there is a rule with
head predicate R” and there are “new” tuples in a variable input_R? that have not yet
been processed for this rule. The step is to add the “new” tuples to the 0™ supplementary
relation for this rule. However, only “new” tuples that unify with the head of the rule are
added to the supplementary relation. A “new” tuple in input_R? might fail to unify with
the head of a rule defining R if there are repeated variables or constants in the rule head
(see Exercise 13.9).

New tuples are generated in supplementary relations sup]‘ in two ways: Either some
new tuples have been obtained for sup j_l (case B); or some new tuples have been obtained
for the idb predicate occurring between supj"_1 and supj" (case C).

(B) Pass new tuples from one supplementary relation to the next: This step can be taken
whenever there is a set T of “new” tuples in a supplementary variable supj_ | that have not
yet been processed, and supji_1 is not the last supplementary relation of the corresponding
rule. Suppose that A} is the atom in the rule immediately following supjifl.

322 Evaluation of Datalog

Two cases arise:

(i) Ajis RY(u) for some edb predicate R. Then a combination of joins and pro-
jections on R and T is used to determine the appropriate tuples to be added to
sup ji .

(ii) Ajis R (u) for some idb predicate R. Note that each of the bound variables in
y occurs in supji_l. Two actions are now taken.

(a) A combination of joins and projections on ans_R? (the current value
for R) and T is used to determine the set 7’ of tuples to be added to
Supji .

(b) The tuples in T [bound (R, y)] — input_R? are added to input_R" .

(C) Use new idb tuples to generate new supplementary relation tuples: This step is
similar to the previous one but is applied when “new” tuples are added to one of the idb
relation variables ans_RY . In particular, suppose that some atom A; with predicate R
occurs in some rule, with surrounding supplementary variables suij1 and supj’. In this
case, use join and projection on all tuples in supjf_ , and the “new” tuples of ans_RY to
create new tuples to be added to supj" .

(D) Process tuples in the final supplementary relation of a rule: This step is used to
generate tuples corresponding to the output of rules. It can be applied when there are “new”
tuples in the final supplementary variable sup’, of a rule. Suppose that the rule predicate is
RY. Add the new tuples in supil to ans_RY .

ExampLE 13.2.1 Figure 13.2 illustrates the data structures and “scratch paper” relations
used in the QSQ algorithm, in connection with the RSG query, as applied to the instance of
Fig. 13.1. Recall the adorned version of the RSG query presented on page 321. The QSQ
templates for these are shown in Fig. 13.2. Finally, the scratch paper relations for the input-
and ans-variables are shown.

Figure 13.2 shows the contents of the relation variables after several steps of the
QSQ approach have been applied. The procedure begins with the insertion of (a) into
input_rsgbf; this corresponds to the rule

query(y) <—rsg(a, y)

Applications of step (A) place (a) into the supplementary variables sup(l) and supg. Step
(B.i) then yields (a,e) and (a, f) in sup?. Because ans_rsg/? is empty at this point,
step (B.ii.a) does not yield any tuples for sup%. However, step (B.ii.b) is used to insert (e)
and (f) into input_rsg’?. Application of steps (B) and (D) on the template of the second
rule yield (g, f) in ans_rsg'?. Application of steps (C), (B), and (D) on the template
of the third rule now yield the first entry in ans_rsg?. The reader is invited to extend
the evaluation to its conclusion (see Exercise 13.10). The answer is obtained by applying
120 | = <o’ to the final contents of ans_rsgbf .

13.2 Top-Down Techniques 323

Global Control Strategies

We have now described all of the basic building blocks of the QSQ approach: the use of
QSQ templates to perform information passing both into rules and sideways through rule
bodies, and the three classes of relations used. A variety of global control strategies can
be used for the QSQ approach. The most basic strategy is stated simply: Apply steps (A)
through (D) until a fixpoint is reached. The following can be shown (see Exercise 13.12):

THEOREM 13.2.2 Let (P, g) be a datalog query. For each input I, any evaluation of QSQ
on (P9, q%) yields the answer of (P, g) on L

We now present a more specific algorithm based on the QSQ framework. This algo-
rithm, called QSQ Recursive (QSQR) is based on a recursive strategy. To understand the
central intuition behind QSQR, suppose that step (B) described earlier is to be performed,
passing from supplementary relation sup§_1 across an idb predicate R? to supplementary
relation sup;. This may lead to the introduction of new tuples into sup; by step (B.ii.a) and
to the introduction of new tuples into input_R" by step (B.ii.b). The essence of QSQR is
that it now performs a recursive call to determine the R values corresponding to the new
tuples added to input_R?, before applying step (B) or (D) to the new tuples placed into

1

sup'..

'/We present QSQR in two steps: first a subroutine and then the recursive algorithm
itself. During processing in QSQR, the global state includes values for ans_RY and
input_RY for each idb predicate R and relevant adornment y . However, the supplementary
relations are not global—local copies of the supplementary relations are maintained by
each call of the subroutine.

Subroutine Process subquery on one rule

Input: A rule for adorned predicate R”, input instance I, a QSQR “state” (i.e., set of values
for the input- and ans-variables), and a set T C input_R" . (Intuitively, the tuples in T
have not been considered with this rule yet).

Action:

1. Remove from T all tuples that do not unify with (the appropriate coordinates of)
the head of the rule.

2. Set supy :=T. [This is step (A) for the tuples in 7'.]

3. Proceed sideways across the body Ay, ..., A, of the rule to the final supplemen-
tary relation sup,, as follows:
For each atom A ;
(a) If A has edb predicate R’, then apply step (B.i) to populate sup It
(b) If A; has idb predicate R’®, then apply step (B.ii) as follows:
(i) Set S :=sup, [bound(R', 8)] — input_R".
(i) Set input_R'® :=input_R'® U S. [This is step (B.ii.b).]
(iii) (Recursively) call algorithm QSQR on the query (R, S).

324 Evaluation of Datalog

[This has the effect of invoking step (A) and its consequences
for the tuples in S.]
(iv) Use sup -1 and the current value of global variable ans_R’ g
to populate sup ;. [This includes steps (B.ii.a) and (C).]
4. Add the tuples produced for sup, into the global variable ans_RY. [This is step
(D).]

The main algorithm is given by the following:

ALGORITHM 13.2.3 (QSQR)

Input: A query of the form (R”, T'), input instance I, and a QSQR “state” (i.e., set of values
for the input- and ans-variables).

Procedure:

1. Repeat until no new tuples are added to any global variable:
Call the subroutine to process subquery (R”, T') on each rule defining R. M

Suppose that we are given the query
query(u) < R(v)

Let y be the adornment of R corresponding to v, and let 7T be the singleton relation
corresponding to the constants in v. To find the answer to the query, the QSQR algorithm is
invoked with input (R, T') and the global state where input_R? = T and all other input-
and ans-variables are empty. For example, in the case of the rsg program, the algorithm is
first called with argument (rsg®, {(a)}) , and in the global state input_rsg®’ = {(a)}. The
answer to the query is obtained by performing a selection and projection on the final value
of ans_RY.
It is straightforward to show that QSQR is correct (Exercise 13.12).

13.3 Magic

An exciting development in the field of datalog evaluation is the emergence of techniques
for bottom-up evaluation whose performance rivals the efficiency of the top-down tech-
niques. This family of techniques, which has come to be known as “magic set” techniques,
simulates the pushing of selections that occurs in top-down approaches. There are close
connections between the magic set techniques and the QSQ algorithm. The magic set tech-
nique presented in this section simulates the QSQ algorithm, using a datalog program that
is evaluated bottom up. As we shall see, the magic sets are basically those sets of tuples
stored in the relations input_RY and sup; of the QSQ algorithm. Given a datalog query
(P, gq), the magic set approach transforms it into a new query (P, ¢g") that has two im-
portant properties: (1) It computes the same answer as (P, g), and (2) when evaluated using
a bottom-up technique, it produces only the set of facts produced by top-down approaches

13.3 Magic 325

(sl.1) rsgbf(x, y) <« input_rsgbf(x),ﬂat(x, y)
(s2.1) rsg’’(x,y) < input_rsg!®(y), flat(x, y)
(s3.1) sup?(x, x1) <« input_rsgb-f(x), up(x, x1)
(s3.2) supg(x, yl) <« sup?(x, x1), rsgfb(yl, x1)
(s3.3) rsgbf(x, y) <« sup%(x, yl), down(yl, y)
(s4.1) sup?(y, yl) <« inpul_rsgfb(y), down(y1,y)
(s4.2) sup3(y, x1) < supi(y, y1), rsg® (y1, x1)
(s4.3) rsgfh(x, y) <—sup§(y,x1), up(x, x1)
(13.2) input_rsgbf (x1) « sup? (x,x1)

(i4.2) input_rsg’?(y1) < sup}(y, y1)

(seed) input_rsgbf (a) <«

(query) query(y) < rsg”(a, y)

Figure 13.3: Transformation of RSG query using magic sets

such as QSQ. In particular, then, (P™, ¢g™) incorporates the effect of “pushing” selections
from the query into bottom-up computations, as if by magic.

We focus on a technique originally called “generalized supplementary magic”; it is
perhaps the most general magic set technique for datalog in the literature. (An earlier
form of magic is considered in Exercise 13.18.) The discussion begins by explaining how
the technique works in connection with the RSG query of the previous section and then
presents the general algorithm.

As with QSQ, the starting point for magic set algorithms is an adorned datalog query
(P, 4%y, Four classes of rules are generated (see Fig. 13.3). The first consists of a family
of rules for each rule of the adorned program P%?. For example, recall rule (3) (see p. 321)
of the adorned program for the RSG query presented in the previous section:

rsg (x, y) < up(x, x1), rsg’?(y1, x1), down(y1, y).

We first present a primitive family of rules corrresponding to that rule, and then apply some
optimizations.

326 Evaluation of Datalog

(s3.0") supg(x) <« input_rsghf (x)

(s3.1°) sup?(x, xl) < supg(x), up(x, x1)

(s3.2) sup%(x,yl) esup?(x,xl),rsgfb(yl,xl)
(s3.3%) sup%(x, y) <« supg(x, yl), down(yl,y)
(S3.4%) rsg? (x, y) < sup3(x, y)

Rule (s3.0%) corresponds to step (A) of the QSQ algorithm; rules (s3.1°) and (s3.3) cor-
respond to step (B.i); rule (s3.2) corresponds to steps (B.ii.a) and (C); and rule (s3.4)
corresponds to step (D). In the literature, the predicate input_rsg’? has usually been de-
noted as magic_rsg/” and sup;- as supmagic;. We use the current notation to stress the
connection with the QSQ framework. Note that the predicate rsg?/ here plays the role of
ans_rsg”f there.

As can be seen by the preceding example, the predicates supg and sup% are essentially
redundant. In general, if the i™ rule defines R, then the predicate supf) is eliminated, with
input_RY used in its place to eliminate rule (3.0”) and to form

(s3.1) sup%(x, x1) <« input_rsgbf(x), up(x, x1).

Similarly, the predicate of the last supplementary relation can be eliminated to delete rule
(s3.4°) and to form

(s3.3) rsg” (x,y) < sup3(x, y1), down(yl, y).

Therefore the set of rules (s3.0”) through (s3.4’) may be replaced by (s3.1), (s3.2), and
(s3.3). Rules (s4.1), (s4.2), and (s4.3) of Fig. 13.3 are generated from rule (4) of the adorned
program for the RSG query (see p. 321). (Recall how the order of the body literals in that
rule are reversed to pass bounding information.) Finally, rules (s1.1) and (s2.1) stem from
rules (1) and (2) of the adorned program.

The second class of rules is used to provide values for the input predicates [i.e.,
simulating step (B.ii.b) of the QSQ algorithm]. In the RSG query, one rule for each of
input_rsg®’ and input_rsg’? is needed:

(i3.2) input_rsgbf (x1) < sup? (x,x1)
(i4.2) input_rsgfh(yl) <« sup‘l‘(y, yl).

Intuitively, the first rule comes from rule (s3.2). In other words, it follows from the second
atom of the body of rule (3) of the original adorned program (see p. 321). In general, an
adorned rule with k idb atoms in the body will generate k input rules of this form.

The third and fourth classes of rules include one rule each; these initialize and conclude
the simulation of QSQ, respectively. The first of these acts as a “seed” and is derived from
the initial query. In the running example, the seed is

input_rsgbf (a) <.

13.4 Two Improvements 327

The second constructs the answer to the query; in the example it is

query(y) < rsghf(a, y).

From this example, it should be straightforward to specify the magic set rewriting of an
adorned query (P, q“¢) (see Exercise 13.16a).

The example showed how the “first” and “last” supplementary predicates supg and
supf‘1 were redundant with inpur_rsg”’ and rsg?’, respectively, and could be eliminated.
Another improvement is to merge consecutive sequences of edb atoms in rule bodies as
follows. For example, consider the rule

@) R”(u) < R"(u1), ..., RY"(uy)

and suppose that predicate Ry is the last idb relation in the body. Then rules (si k), ...,
(si.n) can be replaced with

(si.k") RY (u) < supj_; (ug—1), R (i), REH (), - RY ().

For example, rules (s3.2) and (s3.3) of Fig. 13.3 can be replaced by
(s3.2") rsgbf(x, y) < sup:f(x, x1), rsgfb(yl, x1), down(yl, y).

This simplification can also be used within rules. Suppose that Ry and R; are idb
relations with only edb relations occurring in between. Then rules (i.k), ..., (i.l — 1) can
be replaced with

(sik") supp_y(vi-1) < supj,_; (vk—1), R i), RE), s R).

An analogous simplification can be applied if there are multiple edb predicates at the
beginning of the rule body.
To summarize the development, we state the following (see Exercise 13.16):

THEOREM 13.3.1 Let (P, g) be a query, and let (P, g") be the query resulting from the
magic rewriting of (P, g¢). Then

(a) The answer computed by (P™, g™) on any input instance I is identical to the
answer computed by (P, g) on L.

(b) The set of facts produced by the Improved Seminaive Algorithm of (P™, ¢g") on
input I is identical to the set of facts produced by an evaluation of QSQ on L.

13.4 Two Improvements

This section briefly presents two improvements of the techniques discussed earlier. The
first focuses on another kind of information passing resulting from repeated variables
and constants occurring in idb predicates in rule bodies. The second, called counting, is
applicable to sets of data and rules having certain acyclicity properties.

328 Evaluation of Datalog

Repeated Variables and Constants in Rule Bodies (by Example)

Consider the program P,:

(D T(x,y,2) < R(x,y,2)
(2) T(X,%Z) <_S(xfva)’T(w,Z,Z)
query(y,z) <~ T(1,y,2)

Consider as input the instance I} shown in Fig. 13.4(a). The data structures for a QSQ
evaluation of this program are shown in Fig. 13.4(b). (The annotations ‘$2 = $3’, ‘$2 = $3
=4’ etc., will be explained later.)

A magic set rewriting of the program and query yields

T (x,y,2) < input_T (x), R(x, y, 2)

sup%(x, Y, w) < input_Tbﬁ(x), S(x, y, w)
T (x,y,2) < supi(x,y, w), T (w, z, 2)

input_Tbﬂ(w) <~ sup%(x, Yy, w)
input_Tbﬂ(l) <«

query(y,z) < TY(1,y,2).

On input Iy, the query returns the empty instance. Furthermore, the SLD tree for this
query on I; shown in Fig. 13.5, has only 9 goals and a total of 13 atoms, regardless of the
value of n. However, both the QSQ and magic set approach generate a set of facts with size
proportional to n (i.e., to the size of I).

Why do both QSQ and magic sets perform so poorly on this program and query? The
answer is that as presented, neither QSQ nor magic sets take advantage of restrictions
on derivations resulting from the repeated z variable in the body of rule (2). Analogous
examples can be developed for cases where constants appear in idb atoms in rule bodies.

Both QSQ and magic sets can be enhanced to use such information. In the case of
QSQ, the tuples added to supplementary relations can be annotated to carry information
about restrictions imposed by the atom that “‘caused” the tuple to be placed into the leftmost
supplementary relation. This is illustrated by the annotations in Fig. 13.4(b). First consider
the annotation ‘$2 = $3” on the tuple (3) in input_Tbﬁ . This tuple is included into input_
TY because (1,2, 3)isin sup%, and the next atom considered is bef(w, zZ, z). In particular,
then, any valid tuple (x, y, z) resulting from (3) must have second and third coordinates
equal. The annotation ‘$2 = $3’ is passed with (3) into sup(l) and sup%.

Because variable y is bound to 4 in the tuple (3,4, 5) in sup%, the annotation ‘$2 =
$3’ on (3) in supj “transforms” into ‘$3 = 4’ on this new tuple. This, in turn, implies the
annotation ‘$2 = $3 = 4’ when (5) is added to input_T?f and to both sup(]) and sup(z).

Now consider the tuple (5) in sup(l), with annotation ($2 = $3 = 4). This can generate a
tuple in sup} only if (5, 4, 4) is in R. For input I this tuple is not in R, and so the annotated

13.4 Two Improvements

A B C A B C
R|5 6 6 S{1 2 3

5 6 7 3 4 5

5 6 8

5 6 n

Li(R) Li(S)

(a) Sample input instance I;

T"(x, y, 2)
R(x, y, 2) input_T%1
1
3 ($2=9%3)
5(32=%3=4)
sup{[x] supi[x, v, 2]
1 5 6 6
3 ($2=9$3) 5 6 7
5(3$2=%3=4) 5 6 8
5 6 n
T"(x, y, 2)
S(x, y, w), T(w, z, 2) ans_T
5 6 6
5 6 7
suplx] supilx, y, wl sup3[x, v, 2] 5 6 n
1 123 3406 3 4 6
3 ($2=$3) 345@%$3=4

5(3$2=%3=4)
(b) QSQ evaluation

Figure 13.4: Behavior of QSQ on program with repeated variables

329

330 Evaluation of Datalog

«~T(1,y,2)

<~ R(,y,z) <« S{,y,wl), T(wl, z,2)

| |

X «—1@3,z,2)

s

<~ R3,z,7) «83,z,w2), TWw2,z,2)

| |

X «—T(5,4,4)
< R(5,4,4) < S56,4,w3), T(w3,4,4)

X X

Figure 13.5: Behavior of SLD on program with repeated variables

tuple (5) in sup(l) generates nothing (even though in the original QSQ framework many
tuples are generated). Analogously, because there is no tuple (5, 4, w) in S, the annotated
tuple (5) of supg does not generate anything in sup%. This illustrates how annotations can
be used to restrict the facts generated during execution of QSQ.

More generally, annotations on tuples are conjunctions of equality terms of the form
‘$i =% and ‘$i = a’ (where a is a constant). During step (B.ii.b) of QSQ, annotations
are associated with new tuples placed into relations input_RY. We permit the same tuple
to occur in input_R? with different annotations. This enhanced version of QSQ is called
annotated QSQ. The enhancement correctly produces all answers to the initial query, and
the set of facts generated now closely parallels the set of facts and assignments generated
by the SLD tree corresponding to the QSQ templates used.

The magic set technique can also be enhanced to incorporate the information cap-
tured by the annotations just described. This is accomplished by an initial preprocessing
of the program (and query) called “subgoal rectification.” Speaking loosely, a subgoal cor-
responding to an idb predicate is rectified if it has no constants and no repeated variables.
Rectified subgoals may be formed from nonrectified ones by creating new idb predicates
that correspond to versions of idb predicates with repeated variables and constants. For
example, the following is the result of rectifying the subgoals of the program P,:

T(x,y,2) < R(x,y,2)
T(x,y,z) < Skx,y,w), Ty—g3(w, 2)

Tsp—43(x,2) < R(x,z,2)
Tsr—g3(x, 2) < S(x, z, w), Tyr—g3(w, 2)

13.4 Two Improvements 331

query(y,z) < T(1,y,2)
query(z, z) < Tsr—g3(1, 2).

It is straightforward to develop an iterative algorithm that replaces an arbitrary datalog
program and query with an equivalent one, all of whose idb subgoals are rectified (see Exer-
cise 13.20). Note that there may be more than one rule defining the query after rectification.
The magic set transformation is applied to the rectified program to obtain the final
result. In the preceding example, there are two relevant adornments for the predicate Tg,_g3
(namely, bf and bb).
The following can be verified (see Exercise 13.21):

THEOREM 13.4.1 (Informal) The framework of annotated QSQ and the magic set trans-
formation augmented with subgoal rectification are both correct. Furthermore, the set of
idb predicate facts generated by evaluating a datalog query with either of these techniques
is identical to the set of facts occurring in the corresponding SLD tree.

A tight correspondence between the assignments in SLD derivation trees and the
supplementary relations generated both by annotated QSQ and rectified magic sets can be
shown. The intuitive conclusion drawn from this development is that top-down and bottom-
up techniques for datalog evaluation have essentially the same efficiency.

Counting (by Example)

We now present a brief sketch of another improvement of the magic set technique. It is
different from the previous one in that it works only when the underlying data set is known
to have certain acyclicity properties.

Consider evaluating the following SG query based on the Same-Generation program:

o)) sg(x,y) < flat(x,y)

2 sg(x,y) < up(x,x1),sg(x1, yl), down(yl,y)
query(y) < sg(a, y)

on the input J,, given by
Jn(up) (a,bi) i €[1,nl}U{(bi, cj) | i, j€ll,nl}

{
Jn(flar) {{ci.dj) 1i, j € [1,n]}
Jn(down) ={(di, ej) | i, j € [1,n]} U {(e;, f) | i € [1,n]}.

Instance J, is shown in Fig. 13.6.

The completed QSQ template on input J; for the second rule of the SG query is shown
in Fig. 13.7(a). (The tuples are listed in the order in which QSQR would discover them.)
Note that on input J,, both sup% and sup% would contain n(n + 1) tuples.

Consider now the proof tree of SG having root sg(a, f) shown in Fig. 13.8 (see
Chapter 12). There is a natural correspondence of the children at depth 1 in this tree with the
supplementary relation atoms sup% (a), sup% (a, by), sup% (a,er), and sup% (a, f) generated

332 Evaluation of Datalog

flat
¢) d, d,
up down
b, b, €)
up down
a f

Figure 13.6: Instance J; for counting

by QSQ; and between the children at depth 2 with sup%(bl), sup% (b1, c1), sup% (b1, dy), and
sup%(bl, ey).

A key idea in the counting technique is to record information about the depths at which
supplementary relation atoms occur. In some cases, this permits us to ignore some of the
specific constants present in the supplementary atoms. You will find that this is illustrated
in Fig. 13.7(b). For example, we show atoms count_sup(z)(l, a, count_supf(l, b1), count_
supé(l, e1), and count_sup%(l, f) that correspond to the supplementary atoms sup(z)(a),
supi(a, by), sup%(a, e1), and sup%(a, f). Note that, for example, count_sup%(l c1) corre-
sponds to both sup%(bl, c1) and sup% (ba, c1).

More generally, the modified supplementary relation atoms hold an “index” that indi-
cates a level in a proof tree corresponding to how the atom came to be created. Because
of the structure of SG, and assuming that the up relation is acyclic, these modified supple-
mentary relations can be used to find query answers. Note that on input J,,, the relations
countsup%/ and count_supg hold 2n tuples each rather than n(n + 1), as in the original QSQ
approach.

We now describe how the magic set program associated with the SG query can be
transformed into an equivalent program (on acyclic input) that uses the indexes suggested
by Fig. 13.7(b). The magic set rewriting of the SG query is given by

(s1.1) sgbf(x, y) <« input_sgbf(x),ﬂat(x, y)
(s2.1) sup%(x, x1) < input_sgbf(x), up(x, x1)
(s2.2) sup%(x, yl) < sup%(x, x1), sgbf(xl, yl)

(s2.3) sgbf(x, y) <« sup%(x, yl), down(yl, y)

13.4 Two Improvements

sg¥(x, y)

up(x, x), sg”(x,, y,), down(y,, y)

supj[x] sup3[x, x| sup3[x, y,] sup3[x, yl
a a b, b, d, b, e,
b, a b, b, d, b, e,
b, b, ¢, b, d, b, e,
b, c, b, d, b, e,
b, c, a e, a f
b, ¢ a e

2

[N)

2

(a) Completed QSQ template for sg” on input J,

sg"(x,)

up(x, x,). 3g"(x,, y,). down(y,, y)

NN

count_supi[d, x] count_sup’[d, x|] count_sup3[d, y,] count_sup3[d, y]
1 a 1 b, 2 d, 2 e
2 b, 1 b, 2 d 2 e,
2 b, 2 ¢ 1 e 1 f
2 ¢ 1 e

Figure 13.7:

(i2.2)
(seed)

(query)

(b) Alternative QSQ “template,” using indices

Ilustration of intuition behind counting

input_sgbf (x1) <« sup% (x,x1)
input_sghf (a) <

query(y) < sg"(a, y).

333

The counting version of this is now given. (In other literature on counting, the seed is
initialized with O rather than 1.)

334 Evaluation of Datalog

sg(a, f)

up(a, b)) sg(b, e) down(e, f)

up(b,, c¢,) sglc, d) down(d, e))

flat(c,, d)

Figure 13.8: A proof tree for sg(a, f)

(c-sl.1) count_sgbf(l, y) <« count_input_sgbf(l, x), flat(x, y)
(c-s2.1) count_sup%(l, x1) <« count_input_sgbf(l, x), up(x, x1)
(c-s2.2) count_sup%([, yl) <« count_sup%([, x1), count_sgbf(l + 1, y1)
(c-s2.3) count_sgbf(l, y) <~ count_sup%(l, yl), down(yl, y)

(c-i2.2) count_input_sgbf(l +1,x1) <« count_sup%(l, x1)
(c-seed) count_input_sghf (1,a) <~

(c-query) query(y) <« count_sgh’ (1, y)

In the preceding, expressions such as / + 1 are viewed as a short hand for using a variable
J in place of I + 1 and including J = I + 1 in the rule body.

In the counting version, the first coordinate of each supplementary relation keeps track
of a level in a proof tree rather than a specific value. Intuitively, when “constructing”
a sequence of supplementary atoms corresponding to a given level of a proof tree, each
idb atom used must have been generated from the next deeper level. This is why count_
sgPT (I + 1, y1) is used in rule (c-s2.2). Furthermore, rule (c-i2.2) initiates the “construc-
tion” corresponding to a new layer of the proof tree.

The counting program of the preceding example is not safe, in the sense that on
some inputs the program may produce an infinite set of tuples in some predicates (e.g.,
count_sup%). For example, this will happen if there is a cycle in the up relation reachable
from a. Analogous situations occur with most applications of counting. As a result, the
counting technique can only be used where the underlying data set is known to satisfy
certain restrictions.

Bibliographic Notes 335

This preceding example is a simple application of the general technique of counting.
A more general version of counting uses three kinds of indexes. The first, illustrated in the
example, records information about levels of proof trees. The second is used to record
information about what rule is being expanded, and the third is used to record which
atom of the rule body is being considered (see Exercise 13.23). A description of the kinds
of programs for which the counting technique can be used is beyond the scope of this
book. Although limited in applicability, the counting technique has been shown to yield
significant savings in some contexts.

Bibliographic Notes

This chapter has presented a brief introduction to the research on heuristics for datalog
evaluation. An excellent survey of this work is [BR88a], which presents a taxonomy of
different techniques and surveys a broad number of them. Several books provide substantial
coverage of this area, including [Bid91a, CGT90, Ul189b]. Experimental results comparing
several of the techniques in the context of datalog are described in [BR88b]. An excellent
survey on deductive database systems, which includes an overview of several prototype
systems that support datalog, is presented in [RU94].

The naive and seminaive strategies for datalog evaluation underlie several early inves-
tigations and implementations [Cha81b, MS81]; the seminaive strategy for evaluation is
described in [Ban85, Ban86], which also propose various refinements. The use of Ti—1and
T' in Algorithm 13.1.1 is from [BR87b]. Reference [CGT90] highlights the close relation-
ship of these approaches to the classical Jacobi and Gauss-Seidel algorithms of numerical
analysis.

An essential ingredient of the top-down approaches to datalog evaluation is that of
“pushing” selections into recursions. An early form of this was developed in [AU79],
where selections and projections are pushed into restricted forms of fixpoint queries (see
Chapter 14 for the definition of fixpoint queries).

The Query-Subquery (QSQ) approach was initially presented in [Vie86]; the indepen-
dently developed method of “extension tables” [DW87] is essentially equivalent to this.
The QSQ approach is extended in [Vie88, Vie89] to incorporate certain global optimiza-
tions. An extension of the technique to general logic programming, called SLD-AL, is
developed in [Vie87a, Vie89]. Related approaches include APEX [Loz85], Earley Deduc-
tion [PW80, Por86], and those of [Nej87, Roe87]. The connection between context-free
parsing and datalog evaluation is highlighted in [Lan88].

The algorithms of the QSQ family are sometimes called “memo-ing” approaches,
because they use various data structures to remember salient inferred facts to filter the work
of traditional SLD resolution.

Perhaps the most general of the top-down approaches uses “rule/goal” graphs [U1185];
these potentially infinite trees intuitively correspond to a breadth-first, set-at-a-time execu-
tion of SLD resolution. Rule/goal graphs are applied in [Van86] to evaluate datalog queries
in distributed systems. Similar graph structures have also been used in connection with gen-
eral logic programs (e.g., [Kow75, Sic76]). A survey of several graph-based approaches is
[DW85].

Turning to bottom-up approaches, the essentially equivalent approaches of [HN84] and

336 Evaluation of Datalog

[GdAM86] develop iterative algebraic programs for linear datalog programs. [GS87] extends
these. A more general approach based on rewriting iterative algebra programs is presented
in [CT87, Tan88].

The magic set and counting techniques originally appeared for linear datalog in
[BMSUS6]. Our presentation of magic sets is based on an extended version called “gen-
eralized supplementary magic sets” [BR87a, BR91]. That work develops a general notion
of sideways information passing based on graphs (see Exercise 13.19), and develops both
magic sets and counting in connection with general logic programming. The Alexander
method [RLKS86, Ker88], developed independently, is essentially the same as general-
ized supplementary magic sets for datalog. This was generalized to logic programming in
[Sek89]. Magic set rewriting has also been applied to optimize SQL queries [MFPR90].

The counting method is generalized and combined with magic sets in [SZ86, SZ88].
Supplementary magic is incorporated in [BR91]. Analytic comparisons of magic and
counting for selected programs are presented in [MSPS87].

Another bottom-up technique is Static Filtering [KL86a, KL86b]. This technique
forms a graph corresponding to the flow of tuples through a bottom-up evaluation and then
modifies the graph in a manner that captures information passing resulting from constants
in the initial query.

Several of the investigations just mentioned, including [BR87a, KLL86a, KL.86b, Ul185,
Vie86], emphasize the idea that sideways information passing and control are largely
independent. Both [SZ88] and [BR91] describe fairly general mechanisms for specifying
and using alternative sideways information passing and related message passing. A more
general form of sideways information passing, which passes bounding inequalities between
subgoals, is studied in [APPT86]. A formal framework for studying the success of pushing
selections into datalog programs is developed in [BKBRS87].

Several papers have studied the connection between top-down and bottom-up evalua-
tion techniques. One body of the research in this direction focuses on the sets of facts gener-
ated by the top-down and bottom-up techniques. One of the first results relating top-down
and bottom-up is from [BR87a, BR91], where it is shown that if a top-down technique
and the generalized supplementary magic set technique use a given family of sideways
information passing techniques, then the sets of intermediate facts produced by both tech-
niques correspond. That research is conducted in the context of general logic programs that
are range restricted. These results are generalized to possibly non-range-restricted logic
programs in the independent research [Ram91] and [Sek89]. In that research, bottom-up
evaluations may use terms and tuples that include variables, and bottom-up evaluation of
rewritten programs uses unification rather than simple relational join. A close correspon-
dence between top-down and bottom-up evaluation for datalog was established in [U1189a],
where subgoal rectification is used. The treatment of Program P, and Theorem 13.4.1 are
inspired by that development. This close correspondence is extended to arbitrary logic
programs in [UlI89b]. Using a more detailed cost model, [SR93] shows that bottom-up
evaluation asymptotically dominates top-down evaluation for logic programs, even if they
produce nonground terms in their output.

A second direction of research on the connection between top-down and bottom-up
approaches provides an elegant unifying framework [Bry89]. Recall in the discussion of
Theorem 13.2.2 that the answer to a query can be obtained by performing the steps of

Exercises 337

the QSQ until a fixpoint is reached. Note that the fixpoint operator used in this chapter is
different from the conventional bottom-up application of Tp used by the naive algorithm for
datalog evaluation. The framework presented in [Bry89] is based on meta-interpreters (i.e.,
interpreters that operate on datalog rules in addition to data); these can be used to specify
QSQ and related algorithms as bottom-up, fixpoint evaluations. (Such meta-programming
is common in functional and logic programming but yields novel results in the context of
datalog.) Reference [Bry89] goes on to describe several top-down and bottom-up datalog
evaluation techniques within the framework, proving their correctness and providing a
basis for comparison.

A recent investigation [NRSU89] improves the performance of the magic sets in some
cases. If the program and query satisfy certain conditions, then a technique called factoring
can be used to replace some predicates by new predicates of lower arity. Other improve-
ments are considered in [Sag90], where it is shown in particular that the advantage of one
method over another may depend on the actual data, therefore stressing the need for tech-
niques to estimate the size of idb’s (e.g., [LN90]).

Extensions of the datalog evaluation techniques to stratified datalog™ programs (see
Chapter 15) include [BPR87, Ros91, SI88, KT88].

Another important direction of research has been the parallel evaluation of datalog
programs. Heuristics are described in [CW89b, GST90, Hul89, SLI1, WS88, WO90].

A novel approach to answering datalog queries efficiently is developed in [DT92,
DS93]. The focus is on cases in which the same query is asked repeatedly as the under-
lying edb is changing. The answer of the query (and additional scratch paper relations)
is materialized against a given edb state, and first-order queries are used incrementally to
maintain the materialized data as the underlying edb state is changed.

A number of prototype systems based on variants of datalog have been developed,
incorporating some of the techniques mentioned in this chapter. They include DedGin
[Vie87b, LV89], NAIL! [UlI85, MUV86, MNS*87], LDL [NT89], ALGRES [CRG'88],
NU-Prolog [RSB*87], GLUE-NAIL [DMP93], and CORAL [RSS92, RSSS93]. Descrip-
tions of projects in this area can also be found in [Zan87], [RU9%4].

Exercises

Exercise 13.1 Recall the program RSG’ from Section 13.1. Exhibit an instance I such that on

this input, 8£sg # () foreachi > 0.
Exercise 13.2 Recall the informal discussion of the two seminaive “versions” of the nonlinear
ancestor program discussed in Section 13.1. Let P; denote the first of these, and P, the second.

Show the following.
(a) For some input, P, can produce the same tuple more than once at some level beyond
the first level.

(b) If P, produces the same tuple more than once, then each occurrence corresponds to
a distinct proof tree (see Section 12.5) from the program and the input.

(c) P can produce a given tuple twice, where the proof trees corresponding to the two
occurrences are identical.

Exercise 13.3 Consider the basic seminaive algorithm (13.1.1).

338 Evaluation of Datalog

(a) Verify that this algorithm terminates on all inputs.

(b) Show that for each i >0 and each idb predicate S, after the jth execution of the
loopAthe value of variable S* is equal to T, (I)(S) and the value of A’SH is equal
to T;,+1 IM(S) = TpM(S).

(c) Verify that this algorithm produces correct output on all inputs.

(d) Give an example input for which the same tuple is generated during different loops
of the algorithm.

Exercise 13.4 Consider the improved seminaive algorithm (13.1.2).

(a) Verify that this algorithm terminates and produces correct output on all inputs.

(b) Give an example of a program P for which the improved seminaive algorithm pro-
duces fewer redundant tuples than the basic seminaive algorithm.

Exercise 13.5 Let P be a linear datalog program, and let P’ be the set of rules associated with
P by the improved seminaive algorithm. Suppose that the naive algorithm is performed using P’
on some input I. Does this yield P (I)? Why or why not? What if the basic seminaive algorithm
is used?

Exercise 13.6 A set X of relevant facts for datalog query (P, ¢) and input I is minimal if (1)
for each answer § of ¢ there is a proof tree for 8 constructed from facts in X, and (2) X is
minimal having this property. Informally describe an algorithm that produces a minimal set of
relevant facts for a query (P, ¢) and input I and is polynomial time in the size of L.

Exercise 13.7 [BR91] Suppose that program P includes the rule

p:S(x,y) < Si(x,2), $2(z, y), S3(u, v), Sa(v, w),
where S3, S4 are edb relations. Observe that the atoms S3(u, v) and S4(v, w) are not connected
to the other atoms of the rule body or to the rule head. Furthermore, in an evaluation of P on

input I, this rule may contribute some tuple to S only if there is an assignment « for u, v, w such
that {S3(u, v), S4(v, w)}[a] € 1. Explain why it is typically more efficient to replace p with

P S, y) < Si(x,2), S2(z, ¥)

if there is such an assignment and to delete p from P otherwise. Extend this to the case when
S3, Sy are idb relations. State a general version of this heuristic improvement.

Exercise 13.8 Consider the adorned rule
RY (x,w) < 87 (2, 3), 8 (3, 2). T . v). Ty (v, w).

Explain why it makes sense to view the second occurrence of v as bound.

Exercise 13.9 Consider the rule
R(x,y,y) < S(y,2), T(z, x).

(a) Construct adorned versions of this rule for Rf? and R/’

Exercises 339

(b) Suppose that in the QSQ algorithm a tuple (b, c) is placed into input_R??. Explain
pp g p p D P

why this tuple should not be placed into the 0 supplementary relation for the second
adorned rule constructed in part (a).

(c) Exhibit an example analogous to part (b) based on the presence of a constant in the
head of a rule rather than on repeated variables.

Exercise 13.10

(a) Complete the evaluation in Example 13.2.1.
(b) Use Algorithm 13.2.3 (QSQR) to evaluate that example.

* Exercise 13.11 In the QSQR algorithm, the procedure for processing subqueries of the form
(RY, S) is called until no global variable is changed. Exhibit an example datalog query and input
where the second cycle of calls to the subqueries (R”, §) generates new answer tuples.

® Exercise 13.12 (a) Prove Theorem 13.2.2. (b) Prove that the QSQR algorithm is correct.

* Exercise 13.13 The Iterative QSQ (QSQI) algorithm uses the QSQ framework, but without
recursion. Instead in each iteration it processes each rule body from left to right, using the values
currently in the relations ans_RY when computing values for the supplementary relations.
As with QSQR, the variables input R and ans_R” are global, and the variables for the
supplementary relations are local. Iteration continues until there is no change to the global
variables.

(a) Specify the QSQI algorithm more completely.
(b) Give an example where QSQI performs redundant work that QSQR does not.

Exercise 13.14 [BR91] Consider the following query based on a nonlinear variant of the
same-generation program, called here the SGV query:

(@) sgv(x,y) < flat(x, y)
(b) sgv(x,y) < up(x, z1), sgv(zl, z2), flat(z2, z3), sgv(z3, z4), down(z4, y)
query(y) < sgv(a, y)

Give the magic set transformation of this program and query.

Exercise 13.15 Give examples of how a query (P™, ¢) resulting from magic set rewriting
can produce nonrelevant and redundant facts.

& Exercise 13.16

(a) Give the general definition of the magic set rewriting technique.
(b) Prove Theorem 13.3.1.

Exercise 13.17 Compare the difficulties, in practical terms, of using the QSQ and magic set
frameworks for evaluating datalog queries.

* Exercise 13.18 Let (P, g) denote the SGV query of Exercise 13.14. Let (P, ¢") denote the
result of rewriting this program, using the (generalized supplementary) magic set transformation
presented in this chapter. Under an earlier version, called here “original” magic, the rewritten
form of (P, q) is (P, q°™):

340 Evaluation of Datalog

(o-m1) sgvbf(x, y) <~ input_sgvbf(x),ﬂat(x, y)
(0-m2) sgvbf(x, y) <~ input_sgvbf(x), up(x, z1), sgvhf (z1, z2),
flat (22, 23), sgv”/ (23, 24), down(z4, y)

(0-12.2) input_sgvbf (z1) « input_sgvbf (x), up(x, z1)

(0-i2.4) input_sgvbf (z3) « input_sgvbf(x), up(x, z1), sgvbf (z1,z2),
flat(z2, z3)

(0-seed) input_sgv(a) <~

(o-query) query(y) —sg’l(a, y)

Intuitively, the original magic set transformation uses the relations input_RY, but not supple-
mentary relations.

(a) Verify that (P°™, g°™) is equivalent to (P, q).

(b) Compare the family of facts computed during the executions of (P™,¢™) and
(P()m’ q(lm).

(c) Give a specification for the original magic set transformation, applicable to any
datalog query.

* Exercise 13.19 Consider the adorned rule
R (x,y,2) < lef(x, s), Tzhf(s, 1), Tshf(y, u), Tff(”s v), Tshbf(” v, 2).

A sip graph for this rule has as nodes all atoms of the rule and a special node exit, and
edges (R, Ty), (T1, Tr), (R, T3), (T3, Ty), (T, Ts), (T4, Ts), (Ts, exit). Describe a family of
supplementary relations, based on this sip graph, that can be used in conjunction with the QSQ
and magic set approaches. [Use one supplementary relation for each edge (corresponding to
the output of the tail of the edge) and one supplementary relation for each node except for R
(corresponding to the input to this node—in general, this will equal the join of the relations for
the edges entering the node).] Explain how this may increase efficiency over the left-to-right
approach used in this chapter. Generalize the construction. (The notion of sip graph and its use
is a variation of [BR91].)

® Exercise 13.20 [UlI89a] Specify an algorithm that replaces a program and query by an equiv-
alent one, all of whose idb subgoals are rectified. What is the complexity of this algorithm?

® Exercise 13.21
(a) Provide a more detailed specification of the QSQ framework with annotations, and
prove its correctness.

(b) [UII89b, Ull89a] State formally the definitions needed for Theorem 13.4.1, and prove
it.

Exercise 13.22 Write a program using counting that can be used to answer the RSG query
presented at the beginning of Section 13.2.

(c-sl.1)
(c-s2.1)
(c-s2.2)

(c-s2.3)
(c-s2.4)

(c-s2.5)

(c-i2.2)

(c-i2.4)

(c-seed)

(c-query)

Exercises 341

Count_sgvbf(l, K,L,y) <~ count_input_sgvbf(l, K, L,x),flat(x,y)
count_sup%(l, K,L,z1) <~ count_input_sgvbf(l, K,L,x),up(x,zl)
wunt_sup%([, K,L,z2) <« count_sup%(l, K,L,z1),

count_sgvhf(l +1,2K +2,5L +2,272)
count_sup%(l, K, L,z3) <« count_sup%(], K, L,z2),flat(z2, z3)
count_supﬁ(l, K,L,z4) <« count_sup%(l, K, L,Zz3),

count_sgvbf(l +1,2K +2,5L +4,z74),
count_sgvbf(l, K,L,y) <« count_sup:‘.:(l, K, L, z4), down(z4, y)

count_inpuz_sgvbf(l +1,2K +2,5L+2,z1)

<« count_sup%(l, K,L,z1)
count_input_sgvbf(l +1,2K +2,5L +4,273)

«— count_sup%(l, K, L,2z3)

counl_input_sgvbf(l ,0,0,a) <

query(y) <« count_sgv?* (1,0, 0, y)

Figure 13.9: Generalized counting transformation on SGV query

* Exercise 13.23 [BR91] This exercise illustrates a version of counting that is more general
than that of Exercise 13.22. Indexed versions of predicates shall have three index coordinates
(occurring leftmost) that hold:

(@)
(ii)

(iii)

The level in the proof tree of the subgoal that a given rule is expanding.

An encoding of the rules used along the path from the root of the proof tree to the
current subgoal. Suppose that there are k rules, numbered (1), ..., (k). The index
for the root node is 0 and, given index K, if rule number i is used next, then the next
index is given by kK +1i.

An encoding of the atom occurrence positions along the path from root to the current
node. Assuming that / is the maximum number of idb atoms in any rule body, this
index is encoded in a manner similar to item (ii).

A counting version of the SGV query of Exercise 13.14 is shown in Fig. 13.9. Verify that this is
equivalent to the SGV query in the case where there are no cycles in up or down.

