
P A R T

D Datalog and Recursion

In Part B, we considered query languages ranging from conjunctive queries to first-order
queries in the three paradigms: algebraic, logic, and deductive. We did this by enriching

the conjunctive queries first with union (disjunction) and then with difference (negation).
In this part, we further enrich these languages by adding recursion. First we add recursion
to the conjunctive queries, which yields datalog. We study this language in Chapter 12.
Although it is too limited for practical use, datalog illustrates some of the essential aspects
of recursion. Furthermore, most existing optimization techniques have been developed for
datalog.

Datalog owes a great debt to Prolog and the logic-programming area in general. A
fundamental contribution of the logic-programming paradigm to relational query languages
is its elegant notation for expressing recursion. The perspective of databases, however, is
significantly different from that of logic programming. (For example, in databases datalog
programs define mappings from instances to instances, whereas logic programs generally
carry their data with them and are studied as stand-alone entities.) We adapt the logic-
programming approach to the framework of databases.

We study evaluation techniques for datalog programs in Chapter 13, which covers
the main optimization techniques developed for recursion in query languages, including
seminaive evaluation and magic sets.

Although datalog is of great theoretical importance, it is not adequate as a practi-
cal query language because of the lack of negation. In particular, it cannot express even
the first-order queries. Chapters 14 and 15 deal with languages combining recursion and
negation, which are proper extensions of first-order queries. Chapter 14 considers the issue
of combining negation and recursion. Languages are presented from all three paradigms,
which support both negation and recursion. The semantics of each one is defined in fun-
damentally operational terms, which include datalog with negation and a straightforward,
fixpoint semantics. As will be seen, the elegant correspondence between languages in the
three paradigms is maintained in the presence of recursion.

Chapter 15 considers approaches to incorporating negation in datalog that are closer
in spirit to logic programming. Several important semantics for negation are presented,
including stratification and well-founded semantics.

271

12 Datalog

Alice: What do we see next?
Riccardo: We introduce recursion.

Sergio: He means we ask queries about your ancestors.
Alice: Are you leading me down a garden path?

Vittorio: Kind of—queries related to paths in a graph call for recursion
and are crucial for many applications.

For a long time, relational calculus and algebra were considered the database languages.
Codd even defined as “complete” a language that would yield precisely relational

calculus. Nonetheless, there are simple operations on data that cannot be realized in the
calculus. The most conspicuous example is graph transitive closure. In this chapter, we
study a language that captures such queries and is thus more “complete” than relational
calculus.1 The language, called datalog, provides a feature not encountered in languages
studied so far: recursion.

We start with an example that motivates the need for recursion. Consider a database
for the Parisian Metro. Note that this database essentially describes a graph. (Database
applications in which part of the data is a graph are common.) To avoid making the
Metro database too static, we assume that the database is describing the available metro
connections on a day of strike (not an unusual occurrence). So some connections may
be missing, and the graph may be partitioned. An instance of this database is shown in
Fig. 12.1.

Natural queries to ask are as follows:

(12.1) What are the stations reachable from Odeon?

(12.2) What lines can be reached from Odeon?

(12.3) Can we go from Odeon to Chatelet?

(12.4) Are all pairs of stations connected?

(12.5) Is there a cycle in the graph (i.e., a station reachable in one or more stops from
itself)?

Unfortunately, such queries cannot be answered in the calculus without using some a

1 We postpone a serious discussion of completeness until Part E, where we tackle fundamental issues
such as “What is a formal definition of data manipulation (as opposed to arbitrary computation)?
What is a reasonable definition of completeness for database languages?”

273

274 Datalog

Links Line Station Next Station

4 St.-Germain Odeon

4 Odeon St.-Michel

4 St.-Michel Chatelet

1 Chatelet Louvre

1 Louvre Palais-Royal

1 Palais-Royal Tuileries

1 Tuileries Concorde

9 Pont de Sevres Billancourt

9 Billancourt Michel-Ange

9 Michel-Ange Iena

9 Iena F. D. Roosevelt

9 F. D. Roosevelt Republique

9 Republique Voltaire

Figure 12.1: An instance I of the Metro database

priori knowledge on the Metro graph, such as the graph diameter. More generally, given a
graph G, a particular vertex a, and an integer n, it is easy to write a calculus query finding
the vertexes at distance less than n from a; but it seems difficult to find a query for all
vertexes reachable from a, regardless of the distance. We will prove formally in Chapter 17
that such a query is not expressible in the calculus. Intuitively, the reason is the lack of
recursion in the calculus.

The objective of this chapter is to extend some of the database languages considered
so far with recursion. Although there are many ways to do this (see also Chapter 14), we
focus in this chapter on an approach inspired by logic programming. This leads to a field
called deductive databases, or database logic programming, which shares motivation and
techniques with the logic-programming area.

Most of the activity in deductive databases has focused on a toy language called dat-
alog, which extends the conjunctive queries with recursion. The interaction between nega-
tion and recursion is more tricky and is considered in Chapters 14 and 15. The importance
of datalog for deductive databases is analogous to that of the conjunctive queries for the
relational model. Most optimization techniques for relational algebra were developed for
conjunctive queries. Similarly, in this chapter most of the optimization techniques in de-
ductive databases have been developed around datalog (see Chapter 13).

Before formally presenting the language datalog, we present informally the syntax and
various semantics that are considered for that language. Following is a datalog program
PTC that computes the transitive closure of a graph. The graph is represented in relation G

and its transitive closure in relation T :

T (x, y)←G(x, y)

T (x, y)←G(x, z), T (z, y).

Datalog 275

Observe that, except for the fact that relation T occurs both in the head and body of the
second rule, these look like the nonrecursive datalog rules of Chapter 4.

A datalog program defines the relations that occur in heads of rules based on other
relations. The definition is recursive, so defined relations can also occur in bodies of rules.
Thus a datalog program is interpreted as a mapping from instances over the relations
occurring in the bodies only, to instances over the relations occurring in the heads. For
instance, the preceding program maps a relation over G (a graph) to a relation over T (its
transitive closure).

A surprising and elegant property of datalog, and of logic programming in general, is
that there are three very different but equivalent approaches to defining the semantics. We
present the three approaches informally now.

A first approach is model theoretic. We view the rules as logical sentences stating a
property of the desired result. For instance, the preceding rules yield the logical formulas

∀x, y(T (x, y) ← G(x, y))(1)

∀x, y, z(T (x, y) ← (G(x, z) ∧ T (z, y))).(2)

The result T must satisfy the foregoing sentences. However, this is not sufficient to deter-
mine the result uniquely because it is easy to see that there are many T s that satisfy the
sentences. However, it turns out that the result becomes unique if one adds the following
natural minimality requirement: T consists of the smallest set of facts that makes the sen-
tences true. As it turns out, for each datalog program and input, there is a unique minimal
model. This defines the semantics of a datalog program. For example, suppose that the
instance contains

G(a, b),G(b, c),G(c, d).

It turns out that T (a, d) holds in each instance that obeys (1) and (2) and where these three
facts hold. In particular, it belongs to the minimum model of (1) and (2).

The second proof-theoretic approach is based on obtaining proofs of facts. A proof of
the fact T (a, d) is as follows:

(i) G(c, d) belongs to the instance;

(ii) T (c, d) using (i) and the first rule;

(iii) G(b, c) belongs to the instance;

(iv) T (b, d) using (iii), (ii), and the second rule;

(v) G(a, b) belongs to the instance;

(vi) T (a, d) using (v), (iv), and the second rule.

A fact is in the result if there exists a proof for it using the rules and the database facts.
In the proof-theoretic perspective, there are two ways to derive facts. The first is to

view programs as “factories” producing all facts that can be proven from known facts.
The rules are then used bottom up, starting from the known facts and deriving all possible
new facts. An alternative top-down evaluation starts from a fact to be proven and attempts
to demonstrate it by deriving lemmas that are needed for the proof. This is the underlying

276 Datalog

intuition of a particular technique (called resolution) that originated in the theorem-proving
field and lies at the core of the logic-programming area.

As an example of the top-down approach, suppose that we wish to prove T (a, d). Then
by the second rule, this can be done by proving G(a, b) and T (b, d). We know G(a, b), a
database fact. We are thus left with proving T (b, d). By the second rule again, it suffices
to prove G(b, c) (a database fact) and T (c, d). This last fact can be proven using the first
rule. Observe that this yields the foregoing proof (i) to (vi). Resolution is thus a particular
technique for obtaining such proofs. As detailed later, resolution permits variables as well
as values in the goals to be proven and the steps used in the proof.

The last approach is the fixpoint approach. We will see that the semantics of the
program can be defined as a particular solution of a fixpoint equation. This approach leads
to iterating a query until a fixpoint is reached and is thus procedural in nature. However,
this computes again the facts that can be deduced by applications of the rules, and in that
respect it is tightly connected to the (bottom-up) proof-theoretic approach. It corresponds
to a natural strategy for generating proofs where shorter proofs are produced before longer
proofs so facts are proven “as soon as possible.”

In the next sections we describe in more detail the syntax, model-theoretic, fixpoint,
and proof-theoretic semantics of datalog. As a rule, we introduce only the minimum
amount of terminology from logic programming needed in the special database case. How-
ever, we make brief excursions into the wider framework in the text and exercises. The
last section deals with static analysis of datalog programs. It provides decidability and
undecidability results for several fundamental properties of programs. Techniques for the
evaluation of datalog programs are discussed separately in Chapter 13.

12.1 Syntax of Datalog

As mentioned earlier, the syntax of datalog is similar to that of languages introduced in
Chapter 4. It is an extension of nonrecursive datalog, which was introduced in Chapter 4.
We provide next a detailed definition of its syntax. We also briefly introduce some of the
fundamental differences between datalog and logic programming.

Definition 12.1.1 A (datalog) rule is an expression of the form

R1(u1)← R2(u2), . . . , Rn(un),

where n ≥ 1, R1, . . . , Rn are relation names and u1, . . . , un are free tuples of appropriate
arities. Each variable occurring in u1 must occur in at least one of u2, . . . , un. A datalog
program is a finite set of datalog rules.

The head of the rule is the expression R1(u1); and R2(u2), . . . , Rn(un) forms the body.
The set of constants occurring in a datalog program P is denoted adom(P); and for an

instance I, we use adom(P, I) as an abbreviation for adom(P) ∪ adom(I).

We next recall a definition from Chapter 4 that is central to this chapter.

12.1 Syntax of Datalog 277

Definition 12.1.2 Given a valuation ν, an instantiation

R1(ν(u1))← R2(ν(u2)), . . . , Rn(ν(un))

of a rule R1(u1)← R2(u2), . . . , Rn(un) with ν is obtained by replacing each variable x by
ν(x).

Let P be a datalog program. An extensional relation is a relation occurring only
in the body of the rules. An intensional relation is a relation occurring in the head of
some rule of P . The extensional (database) schema, denoted edb(P), consists of the
set of all extensional relation names; whereas the intensional schema idb(P) consists
of all the intensional ones. The schema of P , denoted sch(P), is the union of edb(P)
and idb(P). The semantics of a datalog program is a mapping from database instances
over edb(P) to database instances over idb(P). In some contexts, we call the input data
the extensional database and the program the intensional database. Note also that in the
context of logic-based languages, the term predicate is often used in place of the term
relation name.

Let us consider an example.

Example 12.1.3 The following program Pmetro computes the answers to queries (12.1),
(12.2), and (12.3):

St_Reachable(x, x) ←
St_Reachable(x, y) ← St_Reachable(x, z),Links(u, z, y)

Li_Reachable(x, u) ← St_Reachable(x, z),Links(u, z, y)

Ans_1(y) ← St_Reachable(Odeon, y)

Ans_2(u) ← Li_Reachable(Odeon, u)

Ans_3() ← St_Reachable(Odeon,Chatelet)

Observe that St_Reachable is defined using recursion. Clearly,

edb(Pmetro)= {Links},
idb(Pmetro)= {St_Reachable,Li_Reachable,Ans_1,Ans_2,Ans_3}

For example, an instantiation of the second rule of Pmetro is as follows:

St_Reachable(Odeon,Louvre)← St_Reachable(Odeon,Chatelet),

Links(1,Chatelet,Louvre)

278 Datalog

Datalog versus Logic Programming

Given the close correspondence between datalog and logic programming, we briefly high-
light the central differences between these two fields. The major difference is that logic
programming permits function symbols, but datalog does not.

Example 12.1.4 The simple logic program Pleq is given by

leq(0, x)←
leq(s(x), s(y))← leq(x, y)

leq(x,+(x, y))←
leq(x, z)← leq(x, y), leq(y, z)

Here 0 is a constant, s a unary function sysmbol, + a binary function sysmbol, and leq a
binary predicate. Intuitively, s might be viewed as the successor function, + as addition,
and leq as capturing the less-than-or-equal relation. However, in logic programming the
function symbols are given the “free” interpretation—two terms are considered nonequal
whenever they are syntactically different. For example, the terms +(0, s(0)),+(s(0), 0),
and s(0) are all nonequal. Importantly, functional terms can be used in logic programming
to represent intricate data structures, such as lists and trees.

Observe also that in the preceding program the variable x occurs in the head of the
first rule and not in the body, and analogously for the third rule.

Another important difference between deductive databases and logic programs con-
cerns perspectives on how they are typically used. In databases it is assumed that the
database is relatively large and the number of rules relatively small. Furthermore, a da-
talog program P is typically viewed as defining a mapping from instances over the edb
to instances over the idb. In logic programming the focus is different. It is generally as-
sumed that the base data is incorporated directly into the program. For example, in logic
programming the contents of instance Link in the Metro database would be represented
using rules such as Link(4, St.-Germain,Odeon)←. Thus if the base data changes, the
logic program itself is changed. Another distinction, mentioned in the preceding example,
is that logic programs can construct and manipulate complex data structures encoded by
terms involving function symbols.

Later in this chapter we present further comparisons of the two frameworks.

12.2 Model-Theoretic Semantics

The key idea of the model-theoretic approach is to view the program as a set of first-
order sentences (also called a first-order theory) that describes the desired answer. Thus
the database instance constituting the result satisfies the sentences. Such an instance is
also called a model of the sentences. However, there can be many (indeed, infinitely
many) instances satisfying the sentences of a program. Thus the sentences themselves
do not uniquely identify the answer; it is necessary to specify which of the models is

12.2 Model-Theoretic Semantics 279

the intended answer. This is usually done based on assumptions that are external to the
sentences themselves. In this section we formalize (1) the relationship between rules and
logical sentences, (2) the notion of model, and (3) the concept of intended model.

We begin by associating logical sentences with rules, as we did in the beginning of this
chapter. To a datalog rule

ρ : R1(u1)← R2(u2), . . . , Rn(un)

we associate the logical sentence

∀x1, . . . , xm(R1(u1)← R2(u2) ∧ · · · ∧ Rn(un)),

where x1, . . . , xm are the variables occurring in the rule and ← is the standard logical
implication. Observe that an instance I satisfies ρ, denoted I |= ρ, if for each instantiation

R1(ν(u1))← R2(ν(u2)), . . . , Rn(ν(un))

such that R2(ν(u2)), . . . , Rn(ν(un)) belong to I, so does R1(ν(u1)). In the following, we
do not distinguish between a rule ρ and the associated sentence. For a program P , the
conjunction of the sentences associated with the rules of P is denoted by �P .

It is useful to note that there are alternative ways to write the sentences associated with
rules of programs. In particular, the formula

∀x1, . . . , xm(R1(u1)← R2(u2) ∧ · · · ∧ Rn(un))

is equivalent to

∀x1, . . . , xq(∃xq+1, . . . , xm(R2(u2) ∧ · · · ∧ Rn(un))→ R1(u1)),

where x1, . . . , xq are the variables occurring in the head. It is also logically equivalent to

∀x1, . . . , xm(R1(u1) ∨ ¬R2(u2) ∨ · · · ∨ ¬Rn(un)).

This last form is particularly interesting. Formulas consisting of a disjunction of liter-
als of which at most one is positive are called in logic Horn clauses. A datalog program
can thus be viewed as a set of (particular) Horn clauses.

We next discuss the issue of choosing, among the models of �P , the particular model
that is intended as the answer. This is not a hard problem for datalog, although (as we shall
see in Chapter 15) it becomes much more involved if datalog is extended with negation.
For datalog, the idea for choosing the intended model is simply that the model should not
contain more facts than necessary for satisfying �P . So the intended model is minimal in
some natural sense. This is formalized next.

Definition 12.2.1 Let P be a datalog program and I an instance over edb(P). A model
of P is an instance over sch(P) satisfying �P . The semantics of P on input I, denoted
P(I), is the minimum model of P containing I, if it exists.

280 Datalog

Station

Odeon
St.-Michel
Chatelet
Louvres
Palais-Royal
Tuileries
Concorde

Ans_1 Line

4
1

Ans_2

〈 〉

Ans_3

Figure 12.2: Relations of Pmetro(I)

For Pmetro as in Example 12.1.3, and I as in Fig. 12.1, the values of Ans_1, Ans_2, and
Ans_3 in P(I) are shown in Fig. 12.2.

We briefly discuss the choice of the minimal model at the end of this section.
Although the previous definition is natural, we cannot be entirely satisfied with it at

this point:

• For given P and I, we do not know (yet) whether the semantics of P is defined (i.e.,
whether there exists a minimum model of �P containing I).

• Even if such a model exists, the definition does not provide any algorithm for
computing P(I). Indeed, it is not (yet) clear that such an algorithm exists.

We next provide simple answers to both of these problems.
Observe that by definition, P(I) is an instance over sch(P). A priori, we must consider

all instances over sch(P), an infinite set. It turns out that it suffices to consider only those
instances with active domain in adom(P, I) (i.e., a finite set of instances). For given P and
I, let B(P, I) be the instance over sch(P) defined by

1. For each R in edb(P), a fact R(u) is in B(P, I) iff it is in I; and

2. For each R in idb(P), each fact R(u) with constants in adom(P, I) is in B(P, I).

We now verify that B(P, I) is a model of P containing I.

Lemma 12.2.2 Let P be a datalog program and I an instance over edb(P). Then B(P, I)
is a model of P containing I.

Proof Let A1 ← A2, . . . , An be an instantiation of some rule r in P such that A2, . . . ,

An hold in B(P, I). Then consider A1. Because each variable occurring in the head of r
also occurs in the body, each constant occurring in A1 belongs to adom(P, I). Thus by
definition 2 just given, A1 is in B(P, I). Hence B(P, I) satisfies the sentence associated
with that particular rule, so B(P, I) satisfies �P . Clearly, B(P, I) contains I by definition 1.

12.2 Model-Theoretic Semantics 281

Thus the semantics of P on input I, if defined, is a subset of B(P, I). This means that
there is no need to consider instances with constants outside adom(P, I).

We next demonstrate that P(I) is always defined.

Theorem 12.2.3 Let P be a datalog program, I an instance over edb(P), and X the set
of models of P containing I. Then

1. ∩X is the minimal model of P containing I, so P(I) is defined.

2. adom(P (I))⊆ adom(P, I).

3. For each R in edb(P), P(I)(R)= I(R).

Proof Note that X is nonempty, because B(P, I) is in X . Let r ≡ A1 ← A2, . . . , An be
a rule in P and ν a valuation of the variables occurring in the rule. To prove (1), we show
that

(*) if ν(A2), . . . , ν(An) are in ∩X then ν(A1) is also in ∩X .

For suppose that (*) holds. Then ∩X |= r , so ∩X satisfies �P . Because each instance in X
contains I, ∩X contains I. Hence ∩X is a model of P containing I. By construction, ∩X
is minimal, so (1) holds.

To show (*), suppose that ν(A2), . . . , ν(An) are in ∩X and let K be in X . Because
∩X ⊆K, ν(A2), . . . , ν(An) are in K. Because K is in X , K is a model of P , so ν(A1) is
in K. This is true for each K in X . Hence ν(A1) is in ∩X and (*) holds, which in turn
proves (1).

By Lemma 12.2.2, B(P, I) is a model of P containing I. Therefore P(I)⊆ B(P, I).
Hence

• adom(P (I))⊆ adom(B(P, I))= adom(P, I), so (2) holds.

• For each R in edb(P), I(R) ⊆ P(I)(R) [because P(I) contains I] and P(I)(R) ⊆
B(P, I)(R)= I(R); which shows (3).

The previous development also provides an algorithm for computing the semantics
of datalog programs. Given P and I, it suffices to consider all instances that are subsets of
B(P, I), find those that are models of P and contain I, and compute their intersection. How-
ever, this is clearly an inefficient procedure. The next section provides a more reasonable
algorithm.

We conclude this section with two remarks on the definition of semantics of datalog
programs. The first explains the choice of a minimal model. The second rephrases our
definition in more standard logic-programming terminology.

Why Choose the Minimal Model?

This choice is the natural consequence of an implicit hypothesis of a philosophical nature:
the closed world assumption (CWA) (see Chapter 2).

The CWA concerns the connection between the database and the world it models.

282 Datalog

Clearly, databases are often incomplete (i.e., facts that may be true in the world are not
necessarily recorded in the database). Thus, although we can reasonably assume that a
fact recorded in the database is true in the world, it is not clear what we can say about
facts not explicitly recorded. Should they be considered false, true, or unknown? The CWA
provides the simplest solution to this problem: Treat the database as if it records complete
information about the world (i.e., assume that all facts not in the database are false). This
is equivalent to taking as true only the facts that must be true in all worlds modeled by
the database. By extension, this justifies the choice of minimal model as the semantics of
a datalog program. Indeed, the minimal model consists of the facts we know must be true
in all worlds satisfying the sentences (and including the input instance). As we shall see,
this has an equivalent proof-theoretic counterpart, which will justify the proof-theoretic
semantics of datalog programs: Take as true precisely the facts that can be proven true
from the input and the sentences corresponding to the datalog program. Facts that cannot
be proven are therefore considered false.

Importantly, the CWA is not so simple to use in the presence of negation or disjunction.
For example, suppose that a database holds {p ∨ q}. Under the CWA, then both ¬p and
¬q are inferred. But the union {p ∨ q,¬p,¬q} is inconsistent, which is certainly not the
intended result.

Herbrand Interpretation

We relate briefly the semantics given to datalog programs to standard logic-programming
terminology.

In logic programming, the facts of an input instance I are not separated from the
sentences of a datalog program P . Instead, sentences stating that all facts in I are true
are included in P . This gives rise to a logical theory �P,I consisting of the sentences in �P

and of one sentence P(u) [sometimes written P(u)←] for each fact P(u) in the instance.
The semantics is defined as a particular model of this set of sentences. A problem is that
standard interpretations in first-order logic permit interpretation of constants of the theory
with arbitrary elements of the domain. For instance, the constants Odeon and St.-Michel
may be interpreted by the same element (e.g., John). This is clearly not what we mean
in the database context. We wish to interpret Odeon by Odeon and similarly for all other
constants. Interpretations that use the identity function to interpret the constant symbols
are called Herbrand interpretations (see Chapter 2). (If function symbols are present,
restrictions are also placed on how terms involving functions are interpreted.) Given a set
� of formulas, a Herbrand model of � is a Herbrand interpretation satisfying �.

Thus in logic programming terms, the semantics of a program P given an instance I
can be viewed as the minimum Herbrand model of �P,I.

12.3 Fixpoint Semantics

In this section, we present an operational semantics for datalog programs stemming from
fixpoint theory. We use an operator called the immediate consequence operator. The oper-
ator produces new facts starting from known facts. We show that the model-theoretic se-

12.3 Fixpoint Semantics 283

mantics, P(I), can also be defined as the smallest solution of a fixpoint equation involving
that operator. It turns out that this solution can be obtained constructively. This approach
therefore provides an alternative constructive definition of the semantics of datalog pro-
grams. It can be viewed as an implementation of the model-theoretic semantics.

Let P be a datalog program and K an instance over sch(P). A fact A is an immediate
consequence for K and P if either A ∈K(R) for some edb relation R, or A← A1, . . . , An

is an instantiation of a rule in P and each Ai is in K. The immediate consequence operator
of P , denoted TP , is the mapping from inst(sch(P)) to inst(sch(P)) defined as follows.
For each K, TP (K) consists of all facts A that are immediate consequences for K and P .

We next note some simple mathematical properties of the operator TP over sets of
instances. We first define two useful properties. For an operator T ,

• T is monotone if for each I, J, I⊆ J implies T (I)⊆ T (J).

• K is a fixpoint of T if T (K)=K.

The proof of the next lemma is straightforward and is omitted (see Exercise 12.9).

Lemma 12.3.1 Let P be a datalog program.

(i) The operator TP is monotone.

(ii) An instance K over sch(P) is a model of �P iff TP (K)⊆K.

(iii) Each fixpoint of TP is a model of �P ; the converse does not necessarily hold.

It turns out that P(I) (as defined by the model-theoretic semantics) is a fixpoint of TP .
In particular, it is the minimum fixpoint containing I. This is shown next.

Theorem 12.3.2 For each P and I, TP has a minimum fixpoint containing I, which
equals P(I).

Proof Observe first that P(I) is a fixpoint of TP :

• TP (P (I))⊆ P(I) because P(I) is a model of P ; and

• P(I) ⊆ TP (P (I)). [Because TP (P (I)) ⊆ P(I) and TP is monotone, TP (TP (P (I)))
⊆ TP (P (I)). Thus TP (P (I)) is a model of �P . Because TP preserves the contents
of the edb relations and I⊆ P(I), we have I⊆ TP (P (I)). Thus TP (P (I)) is a model
of �P containing I. Because P(I) is the minimum such model, P(I)⊆ TP (P (I)).]

In addition, each fixpoint of TP containing I is a model of P and thus contains P(I) (which
is the intersection of all models of P containing I). Thus P(I) is the minimum fixpoint of
P containing I.

The fixpoint definition of the semantics of P presents the advantage of leading to a
constructive definition of P(I). In logic programming, this is shown using fixpoint theory
(i.e., using Knaster-Tarski’s and Kleene’s theorems). However, the database framework
is much simpler than the general logic-programming one, primarily due to the lack of
function symbols. We therefore choose to show the construction directly, without the
formidable machinery of the theory of fixpoints in complete lattices. In Remark 12.3.5

284 Datalog

we sketch the more standard proof that has the advantage of being applicable to the larger
context of logic programming.

Given an instance I over edb(P), one can compute TP (I), T 2
P (I), T

3
P (I), etc. Clearly,

I⊆ TP (I)⊆ T 2
P (I)⊆ T 3

P (I) . . .⊆ B(P, I).

This follows immediately from the fact that I ⊆ TP (I) and the monotonicity of TP . Let N
be the number of facts in B(P, I). (Observe that N depends on I.) The sequence {T i

P (I)}i
reaches a fixpoint after at most N steps. That is, for each i ≥ N , T i

P (I) = T N
P (I). In

particular, TP (T N
P (I))= T N

P (I), so T N
P (I) is a fixpoint of TP . We denote this fixpoint by

T ω
P (I).

Example 12.3.3 Recall the program PTC for computing the transitive closure of a
graph G:

T (x, y)←G(x, y)

T (x, y)←G(x, z), T (z, y).

Consider the input instance

I= {G(1, 2),G(2, 3),G(3, 4),G(4, 5)}.

Then we have

TPTC(I)= I ∪ {T (1, 2), T (2, 3), T (3, 4), T (4, 5)}
T 2
PTC

(I)= TPTC(I) ∪ {T (1, 3), T (2, 4), T (3, 5)}
T 3
PTC

(I)= T 2
PTC

(I) ∪ {T (1, 4), T (2, 5)}
T 4
PTC

(I)= T 3
PTC

(I) ∪ {T (1, 5)}
T 5
PTC

(I)= T 4
PTC

(I).

Thus T ω
PTC

(I)= T 4
PTC

(I).

We next show that T ω
P (I) is exactly P(I) for each datalog program P .

Theorem 12.3.4 Let P be a datalog program and I an instance over edb(P). Then
T ω
P (I)= P(I).

Proof By Theorem 12.3.2, it suffices to show that T ω
P (I) is the minimum fixpoint of TP

containing I. As noted earlier,

TP (T
ω
P (I))= TP (T

N
P (I))= T N

P (I)= T ω
P (I).

12.3 Fixpoint Semantics 285

where N is the number of facts in B(P, I). Therefore T ω
P (I) is a fixpoint of TP that con-

tains I.
To show that it is minimal, consider an arbitrary fixpoint J of TP containing I. Then

J ⊇ T 0
P (I)= I. By induction on i, J ⊇ T i

P (I) for each i, so J ⊇ T ω
P (I). Thus T ω

P (I) is the
minimum fixpoint of TP containing I.

The smallest integer i such that T i
P (I)= T ω

P (I) is called the stage for P and I and is
denoted stage(P, I). As already noted, stage(P, I)≤N = |B(P, I)|.

Evaluation

The fixpoint approach suggests a straightforward algorithm for the evaluation of datalog.
We explain the algorithm in an example. We extend relational algebra with a while operator
that allows us to iterate an algebraic expression while some condition holds. (The resulting
language is studied extensively in Chapter 17.)

Consider again the transitive closure query. We wish to compute the transitive closure
of relation G in relation T . Both relations are over AB. This computation is performed by
the following program:

T :=G;
while q(T) �= T do T := q(T);

where

q(T)=G ∪ πAB(δB→C(G) �� δA→C(T)).

(Recall that δ is the renaming operation as introduced in Chapter 4.)
Observe that q is an SPJRU expression. In fact, at each step, q computes the im-

mediate consequence operator TP , where P is the transitive closure datalog program in
Example 12.3.3. One can show in general that the immediate consequence operator can be
computed using SPJRU expressions (i.e., relational algebra without the difference opera-
tion). Furthermore, the SPJRU expressions extended carefully with a while construct yield
exactly the expressive power of datalog. The test of the while is used to detect when the
fixpoint is reached.

The while construct is needed only for recursion. Let us consider again the nonrecur-
sive datalog of Chapter 4. Let P be a datalog program. Consider the graph (sch(P), EP),
where 〈S, S′〉 is an edge in EP if S′ occurs in the head of some rule r in P and S occurs in
the body of r . Then P is nonrecursive if the graph is acyclic. We mentioned already that
nr-datalog programs are equivalent to SPJRU queries (see Section 4.5). It is also easy to
see that, for each nr-datalog program P , there exists a constant d such that for each I over
edb(P), stage(P, I) ≤ d . In other words, the fixpoint is reached after a bounded number
of steps, dependent only on the program. (See Exercise 12.29.) Programs for which this
happens are called bounded. We examine this property in more detail in Section 12.5.

A lot of redundant computation is performed when running the preceding transitive
closure program. We study optimization techniques for datalog evaluation in Chapter 13.

286 Datalog

Remark 12.3.5 In this remark, we make a brief excursion into standard fixpoint theory
to reprove Theorem 12.3.4. This machinery is needed when proving the analog of that
theorem in the more general context of logic programming. A partially ordered set (U,≤)
is a complete lattice if each subset has a least upper bound and a greatest lower bound,
denoted sup and inf , respectively. In particular, inf (U) is denoted⊥ and sup(U) is denoted
,. An operator T on U is monotone iff for each x, y ∈ U , x ≤ y implies T (x)≤ T (y). An
operator T on U is continuous if for each subset V , T (sup(V)) = sup(T (V)). Note that
continuity implies monotonicity.

To each datalog program P and instance I, we associate the program PI consisting
of the rules of P and one rule R(u)← for each fact R(u) in I. We consider the complete
lattice formed with (inst(sch(P)),⊆) and the operator TPI defined by the following: For
each K, a fact A is in TPI(K) if A is an immediate consequence for K and PI. The operator
TPI on (inst(sch(P)),⊆) is continuous (so also monotone).

The Knaster-Tarski theorem states that a monotone operator in a complete lattice
has a least fixpoint that equals inf ({x | x ∈ U, T (x) ≤ x}). Thus the least fixpoint of TPI

exists. Fixpoint theory also provides the constructive definition of the least fixpoint for
continuous operators. Indeed, Kleene’s theorem states that if T is a continuous operator on
a complete lattice, then its least fixpoint is sup({Ki | i ≥ 0}) where K0 =⊥ and for each
i > 0, Ki = T (Ki−1). Now in our case, ⊥= ∅ and

∅ ∪ TPI(∅) ∪ · · · ∪ T i
PI
(∅) ∪ · · ·

coincides with P(I).
In logic programming, function symbols are also considered (see Example 12.1.4). In

this context, the sequence of {T i
PI
(I)}i>0 does not generally converge in a finite number

of steps, so the fixpoint evaluation is no longer constructive. However, it does converge in
countably many steps to the least fixpoint ∪{T i

PI
(∅) | i ≥ 0}. Thus fixpoint theory is useful

primarily when dealing with logic programs with function symbols. It is an overkill in the
simpler context of datalog.

12.4 Proof-Theoretic Approach

Another way of defining the semantics of datalog is based on proofs. The basic idea is that
the answer of a program P on I consists of the set of facts that can be proven using P and
I. The result turns out to coincide, again, with P(I).

The first step is to define what is meant by proof . A proof tree of a fact A from I and
P is a labeled tree where

1. each vertex of the tree is labeled by a fact;

2. each leaf is labeled by a fact in I;

3. the root is labeled by A; and

4. for each internal vertex, there exists an instantiation A1 ← A2, . . . , An of a rule
in P such that the vertex is labeled A1 and its children are respectively labeled
A2, . . . , An.

Such a tree provides a proof of the fact A.

12.4 Proof-Theoretic Approach 287

(a) Datalog proof (b) Context-free derivation

S(1,6)

R(5,a,6)T(1,5)

T(3,5)R(1,a,2) R(2,b,3)

R(3,a,4) R(4,a,5)

rule 2

rule 1

rule 3

S

aT

Ta b

a a

Figure 12.3: Proof tree

Example 12.4.1 Consider the following program:

S(x1, x3)← T (x1, x2), R(x2, a, x3)

T (x1, x4)← R(x1, a, x2), R(x2, b, x3), T (x3, x4)

T (x1, x3)← R(x1, a, x2), R(x2, a, x3)

and the instance

{R(1, a, 2), R(2, b, 3), R(3, a, 4), R(4, a, 5), R(5, a, 6)}.

A proof tree of S(1, 6) is shown in Fig. 12.3(a).

The reader familiar with context-free languages will notice the similarity between
proof trees and derivation trees in context-free languages. This connection is especially
strong in the case of datalog programs that have the form of the one in Example 12.4.1.
This will be exploited in the last section of this chapter.

Proof trees provide proofs of facts. It is straightforward to show that a fact A is in P(I)
iff there exists a proof tree for A from I and P . Now given a fact A to prove, one can look
for a proof either bottom up or top down.

The bottom-up approach is an alternative way of looking at the constructive fixpoint
technique. One begins with the facts from I and then uses the rules to infer new facts, much
like the immediate consequence operator. This is done repeatedly until no new facts can be
inferred. The rules are used as “factories” producing new facts from already proven ones.
This eventually yields all facts that can be proven and is essentially the same as the fixpoint
approach.

In contrast to the bottom-up and fixpoint approaches, the top-down approach allows
one to direct the search for a proof when one is only interested in proving particular facts.

288 Datalog

For example, suppose the query Ans_1(Louvre) is posed against the program Pmetro of
Example 12.1.3, with the input instance of Fig. 12.1. Then the top-down approach will
never consider atoms involving stations on Line 9, intuitively because they are are not
reachable from Odeon or Louvre. More generally, the top-down approach inhibits the
indiscriminate inference of facts that are irrelevant to the facts of interest.

The top-down approach is described next. This takes us to the field of logic program-
ming. But first we need some notation, which will remind us once again that “To bar an
easy access to newcomers every scientific domain has introduced its own terminology and
notation” [Apt91].

Notation

Although we already borrowed a lot of terminology and notation from the logic-program-
ming field (e.g., term, fact, atom), we must briefly introduce some more.

A positive literal is an atom [i.e., P(u) for some free tuple u]; and a negative literal is
the negation of one [i.e., ¬P(u)]. A formula of the form

∀x1, . . . , xm(A1 ∨ · · · ∨ An ∨ ¬B1 ∨ · · · ∨ ¬Bp),

where the Ai, Bj are positive literals, is called a clause. Such a clause is written in clausal
form as

A1, . . . , An← B1, . . . , Bp.

A clause with a single literal in the head (n= 1) is called a definite clause. A definite clause
with an empty body is called a unit clause. A clause with no literal in the head is called a
goal clause. A clause with an empty body and head is called an empty clause and is denoted

. Examples of these and their logical counterparts are as follows:

definite T (x, y)← R(x, z), T (z, y) T (x, y) ∨ ¬R(x, z) ∨ ¬T (z, y)
unit T (x, y)← T (x, y)

goal ← R(x, z), T (z, y) ¬R(x, z) ∨ ¬T (z, y)
empty false

The empty clause is interpreted as a contradiction. Intuitively, this is because it corresponds
to the disjunction of an empty set of formulas.

A ground clause is a clause with no occurrence of variables.
The top-down proof technique introduced here is called SLD resolution. Goals serve

as the basic focus of activity in SLD resolution. As we shall see, the procedure begins
with a goal such as ← St_Reachable(x,Concorde), Li_Reachable(x, 9). A correct an-
swer of this goal on input I is any value a such that St_Reachable(a,Concorde) and
Li_Reachable(a, 9) are implied by �Pmetro,I. Furthermore, each intermediate step of the
top-down approach consists of obtaining a new goal from a previous goal. Finally, the
procedure is deemed successful if the final goal reached is empty.

The standard exposition of SLD resolution is based on definite clauses. There is a

12.4 Proof-Theoretic Approach 289

subtle distinction between datalog rules and definite clauses: For datalog rules, we imposed
the restriction that each variable that occurs in the head also appears in the body. (In
particular, a datalog unit clause must be ground.) We will briefly mention some minor
consequences of this distinction.

As already introduced in Remark 12.3.5, to each datalog program P and instance I,
we associate the program PI consisting of the rules of P and one rule R(u)← for each
fact R(u) in I. Therefore in the following we ignore the instance I and focus on programs
that already integrate all the known facts in the set of rules. We denote such a program PI
to emphasize its relationship to an instance I. Observe that from a semantic point of view

P(I)= PI(∅).

This ignores the distinction between edb and idb relations, which no longer exists for PI.

Example 12.4.2 Consider the program P and instance I of Example 12.4.1. The rules
of PI are

1. S(x1, x3)← T (x1, x2), R(x2, a, x3)

2. T (x1, x4)← R(x1, a, x2), R(x2, b, x3), T (x3, x4)

3. T (x1, x3)← R(x1, a, x2), R(x2, a, x3)

4. R(1, a, 2)←
5. R(2, b, 3)←
6. R(3, a, 4)←
7. R(4, a, 5)←
8. R(5, a, 6)←

Warm-Up

Before discussing SLD resolution, as a warm-up we look at a simplified version of the
technique by considering only ground rules. To this end, consider a datalog program PI
(integrating the facts) consisting only of fully instantiated rules (i.e., with no occurrences
of variables). Consider a ground goal g ≡

← A1, . . . , Ai, . . . , An

and some (ground) rule r ≡ Ai ← B1, . . . , Bm in PI. A resolvent of g with r is the ground
goal

← A1, . . . , Ai−1, B1, . . . , Bm,Ai+1, . . . , An.

Viewed as logical sentences, the resolvent of g with r is actually implied by g and r .
This is best seen by writing these explicitly as clauses:

290 Datalog

R(5,a,6)

S(1,6) ← T(1,5), R(5,a,6)

R(2,b,3), T(3,5), R(5,a,6)

T(1,5) ← R(1,a,2), R(2,b,3), T(3,5)

T(3,5), R(5,a,6)

R(1,a,2) ←

R(5,a,6)

R(2,b,3) ←

R(4,a,5), R(5,a,6)

T(3,5) ← R(3,a,4), R(4,a,5)

R(5,a,6)

R(3,a,4) ←

R(4,a,5) ←

R(5,a,6) ←

← S(1,6)

← T(1,5),

← R(1,a,2),

← R(2,b,3),

← T(3,5),

← R(3,a,4),

← R(4,a,5),

← R(5,a,6)

←

Figure 12.4: SLD ground refutation

(¬A1 ∨ · · · ∨ ¬Ai ∨ · · · ∨ ¬An) ∧ (Ai ∨ ¬B1 ∨ · · · ∨ ¬Bm)

⇒ (¬A1 ∨ · · · ∨ ¬Ai−1 ∨ ¬B1 ∨ · · · ∨ ¬Bm ∨ ¬Ai+1 ∨ · · · ∨ ¬An).

In general, the converse does not hold.
A derivation from g with PI is a sequence of goals g ≡ g0, g1, . . . such that for each

i > 0, gi is a resolvent of gi−1 with some rule in PI. We will see that to prove a fact A, it
suffices to exhibit a refutation of ← A—that is, a derivation

g0 ≡← A, g1, . . . , gi, . . . , gq ≡ .

Example 12.4.3 Consider Example 12.4.1 and the program obtained by all possible
instantiations of the rules of PI in Example 12.4.2. An SLD ground refutation is shown
in Fig. 12.4. It is a refutation of ← S(1, 6) [i.e. a proof of S(1, 6)].

Let us now explain why refutations provide proofs of facts. Suppose that we wish to
prove A1 ∧ · · · ∧ An. To do this we may equivalently prove that its negation (i.e. ¬A1 ∨
· · · ∨ ¬An) is false. In other words, we try to refute (or disprove) ← A1, . . . , An. The
following rephrasing of the refutation in Fig. 12.4 should make this crystal clear.

12.4 Proof-Theoretic Approach 291

Example 12.4.4 Continuing with the previous example, to prove S(1, 6), we try to refute
its negation [i.e.,¬S(1, 6) or← S(1, 6)]. This leads us to considering, in turn, the formulas

Goal Rule used

¬S(1, 6) (1)
⇒ ¬T (1, 5) ∨ ¬R(5, a, 6) (2)
⇒ ¬R(1, a, 2) ∨ ¬R(2, b, 3) ∨ ¬T (3, 5) ∨ ¬R(5, a, 6) (4)
⇒ ¬R(2, b, 3) ∨ ¬T (3, 5) ∨ ¬R(5, a, 6) (5)
⇒ ¬T (3, 5) ∨ ¬R(5, a, 6) (3)
⇒ ¬R(3, a, 4) ∨ ¬R(4, a, 5) ∨ ¬R(5, a, 6) (6)
⇒ ¬R(4, a, 5) ∨ ¬R(5, a, 6) (7)
⇒ ¬R(5, a, 6) (8)
⇒ false

At the end of the derivation, we have obtained a contradiction. Thus we have refuted
¬S(1, 6) [i.e., proved S(1, 6)].

Thus refutations provide proofs. As a consequence, a goal can be thought of as a query.
Indeed, the arrow is sometimes denoted with a question mark in goals. For instance, we
sometimes write

?- S(1, 6) for ← S(1, 6).

Observe that the process of finding a proof is nondeterministic for two reasons: the
choice of the literal A to replace and the rule that is used to replace it.

We now have a technique for proving facts. The benefit of this technique is that it is
sound and complete, in the sense that the set of facts in P(I) coincides with the facts that
can be proven from PI.

Theorem 12.4.5 Let PI be a datalog program and ground(PI) be the set of instantiations
of rules in PI with values in adom(P, I). Then for each ground goal g, PI(∅) |= ¬g iff there
exists a refutation of g with ground(PI).

Crux To show the “only if,” we prove by induction that

(**)
for each ground goal g, if T i

PI
(∅) |= ¬g,

there exists a refutation of g with ground(PI).

(The “if” part is proved similarly by induction on the length of the refutation. Its proof is
left for Exercise 12.18.)

The base case is obvious. Now suppose that (**) holds for some i ≥ 0, and let
A1, . . . , Am be ground atoms such that T i+1

PI
(∅) |= A1 ∧ · · · ∧ Am. Therefore each Aj is

in T i+1
PI

(∅). Consider some j . If Aj is an edb fact, we are back to the base case. Otherwise

292 Datalog

R(x2,a,x)

S(x1,x3) ← T(x1,x2), R(x2,a,x3)

R(y2,b,x3), T(x3,x2), R(x2,a,x)

T(x1,x4) ← R(x1,a,x2), R(x2,b,x3), T(x3,x4)

T(x3,x2), R(x2,a,x)

R(1,a,2) ←

R(x2,a,x)

R(2,b,3) ←

R(z2,a,x2), R(x2,a,x)

T(x1,x3) ← R(x1,a,x2), R(x2,a,x3)

R(x2,a,x)

R(3,a,4) ←

R(4,a,5) ←

R(5,a,6) ←

← S(1,x)

← T(1,x2),

← R(1,a,y2),

← R(2,b,x3),

← T(3,x2),

← R(3,a,z2),

← R(4,a,x2),

← R(5,a,x)

←

Figure 12.5: SLD refutation

there exists an instantiation Aj ← B1, . . . , Bp of some rule in PI such that B1, . . . , Bp are
in T i

PI
(∅). The refutation of ← Aj with ground(PI) is as follows. It starts with

← Aj

← B1, B2 . . . , Bp.

Now by induction there exist refutations of ← Bn, 1 ≤ n ≤ p, with ground(PI). Using
these refutations, one can extend the preceding derivation to a derivation leading to the
empty clause. Furthermore, the refutations for each of the Aj ’s can be combined to obtain
a refutation of← A1, . . . , Am as desired. Therefore (**) holds for i + 1. By induction, (**)
holds.

SLD Resolution

The main difference between the general case and the warm-up is that we now handle
goals and tuples with variables rather than just ground ones. In addition to obtaining the
goal , the process determines an instantiation θ for the free variables of the goal g, such
that PI(∅) |= ¬θg. We start with an example: An SLD refutation of← S(1, x) is shown in
Fig. 12.5.

In general, we start with a goal (which does not have to be ground):

12.4 Proof-Theoretic Approach 293

← A1, . . . , Ai, . . . , An.

Suppose that we selected a literal to be replaced [e.g., Ai =Q(1, x2, x5)]. Any rule used
for the replacement must have Q for predicate in the head, just as in the ground case. For
instance, we might try some rule

Q(x1, x4, x3)← P(x1, x2), P (x2, x3),Q(x3, x4, x5).

We now have two difficulties:

(i) The same variable may occur in the selected literal and in the rule with two
different meanings. For instance, x2 in the selected literal is not to be confused
with x2 in the rule.

(ii) The pattern of constants and of equalities between variables in the selected literal
and in the head of the rule may be different. In our example, for the first attribute
we have 1 in the selected literal and a variable in the rule head.

The first of these two difficulties is handled easily by renaming the variables of the rules.
We shall use the following renaming discipline: Each time a rule is used, a new set of
distinct variables is substituted for the ones in the rule. Thus we might use instead the rule

Q(x11, x14, x13)← P(x11, x12), P (x12, x13),Q(x13, x14, x15).

The second difficulty requires a more careful approach. It is tackled using unification,
which matches the pattern of the selected literal to that of the head of the rule, if possible.
In the example, unification consists of finding a substitution θ such that θ(Q(1, x2, x5))=
θ(Q(x11, x14, x13)). Such a substitution is called a unifier. For example, the substitu-
tion θ(x11) = 1, θ(x2) = θ(x14) = θ(x5) = θ(x13) = y is a unifier for Q(1, x2, x5) and
Q(x11, x14, x13), because θ(Q(1, x2, x5)) = θ(Q(x11, x14, x13)) = Q(1, y, y). Note that
this particular unifier is unnecessarily restrictive; there is no reason to identify all of
x2, x3, x4, x5.

A unifier that is no more restrictive than needed to unify the atoms is called a most
general unifier (mgu). Applying the mgu to the rule to be used results in specializing the
rule just enough so that it applies to the selected literal. These terms are formalized next.

Definition 12.4.6 Let A,B be two atoms. A unifier for A and B is a substitution θ such
that θA= θB. A substitution θ is more general than a substitution ν, denoted θ ↪→ ν, if
for some substitution ν′, ν = θ ◦ ν′. A most general unifier (mgu) for A and B is a unifier
θ for A,B such that, for each unifier ν of A,B, we have θ ↪→ ν.

Clearly, the relation ↪→ between unifiers is reflexive and transitive but not antisym-
metric. Let ≈ be the equivalence relation on substitutions defined by θ ≈ ν iff θ ↪→ ν and
ν ↪→ θ . If θ ≈ ν, then for each atom A, θ(A) and ν(A) are the same modulo renaming of
variables.

294 Datalog

Computing the mgu

We now develop an algorithm for computing an mgu for two atoms. Let R be a relation
of arity p and R(x1, . . . , xp), R(y1, . . . , yp) two literals with disjoint sets of variables.
Compute ≡, the equivalence relation on var ∪ dom defined as the reflexive, transitive
closure of: xi ≡ yi for each i in [1, p]. The mgu of R(x1, . . . , xp) and R(y1, . . . , yp) does
not exist if two distinct constants are in the same equivalence class. Otherwise their mgu is
the substitution θ such that

1. If z≡ a for some constant a, θ(z)= a;

2. Otherwise θ(z)= z′, where z′ is the smallest (under a fixed ordering on var) such
that z≡ z′.

We show that the foregoing computes an mgu.

Lemma 12.4.7 The substitution θ just computed is an mgu for R(x1, . . . , xp) and
R(y1, . . . , yp).

Proof Clearly, θ is a unifier for R(x1, . . . , xp) and R(y1, . . . , yp). Suppose ν is another
unifier for the same atoms. Let ≡ν be the equivalence relation on var ∪ dom defined by
x ≡ν y iff ν(x) = ν(y). Because ν is a unifier, ν(xi) = ν(yi). It follows that xi ≡ν yi, so
≡ refines≡ν. Then the substitution ν′ defined by ν′(θ(x))= ν(x), is well defined, because
θ(x)= θ(x′) implies ν(x)= ν(x′). Thus ν = θ ◦ ν′ so θ ↪→ ν. Because this holds for every
unifier ν, it follows that θ is an mgu for the aforementioned atoms.

The following facts about mgu’s are important to note. Their proof is left to the reader
(Exercise 12.19). In particular, part (ii) of the lemma says that the mgu of two atoms, if it
exists, is essentially unique (modulo renaming of variables).

Lemma 12.4.8 Let A,B be atoms.

(i) If there exists a unifier for A,B, then A,B have an mgu.

(ii) If θ and θ ′ are mgu’s for A,B then θ ≈ θ ′.
(iii) Let A,B be atoms with mgu θ . Then for each atom C, if C = θ1A = θ2B for

substitutions θ1, θ2, then C = θ3(θ(A))= θ3(θ(B)) for some substitution θ3.

We are now ready to rephrase the notion of resolvent to incorporate variables. Let

g ≡← A1, . . . , Ai, . . . , An, r ≡ B1 ← B2, . . . , Bm

be a goal and a rule such that

1. g and r have no variable in common (which can always be ensured by renaming
the variables of the rule).

2. Ai and B1 have an mgu θ .

12.4 Proof-Theoretic Approach 295

Then the resolvent of g with r using θ is the goal

← θ(A1), . . . , θ(Ai−1), θ(B2), . . . , θ(Bm), θ(Ai+1), . . . , θ(An).

As before, it is easily verified that this resolvent is implied by g and r .
An SLD derivation from a goal g with a program PI is a sequence g0 = g, g1, . . . of

goals and θ0, . . . of substitutions such that for each j , gj is the resolvent of gj−1 with
some rule in PI using θj1. An SLD refutation of a goal g with PI is an SLD derivation
g0 = g, . . . , gq = with PI.

We now explain the meaning of such a refutation. As in the variable-free case, the
existence of a refutation of a goal ← A1, . . . , An with PI can be viewed as a proof of the
negation of the goal. The goal is

∀x1, . . . , xm(¬A1 ∨ · · · ∨ ¬An)

where x1, . . . , xm are the variables in the goal. Its negation is therefore equivalent to

∃x1, . . . , xm(A1 ∧ · · · ∧ An),

and the refutation can be seen as a proof of its validity. Note that, in the case of datalog
programs (where by definition all unit clauses are ground), the composition θ1 ◦ · · · ◦ θq
of mgu’s used while refuting the goal yields a substitution by constants. This substitution
provides “witnesses” for the existence of the variables x1, . . . , xm making true the conjunc-
tion. In particular, by enumerating all refutations of the goal, one could obtain all values
for the variables satisfying the conjunction—that is, the answer to the query

{〈x1, . . . , xm〉 | A1 ∧ · · · ∧ An}.

This is not the case when one allows arbitrary definite clauses rather than datalog rules, as
illustrated in the following example.

Example 12.4.9 Consider the program

S(x, z)←G(x, z)

S(x, z)←G(x, y), S(y, z)

S(x, x)←
that computes in S the reflexive transitive closure of graphG. This is a set of definite clauses
but not a datalog program because of the last rule. However, resolution can be extended to
(and is indeed in general presented for) definite clauses. Observe, for instance, that the goal
← S(w,w) is refuted with a substitution that does not bind variable w to a constant.

SLD resolution is a technique that provides proofs of facts. One must be sure that
it produces only correct proofs (soundness) and that it is powerful enough to prove all

296 Datalog

true facts (completeness). To conclude this section, we demonstrate the soundness and
completeness of SLD resolution for datalog programs.

We use the following lemma:

Lemma 12.4.10 Let g ≡← A1, . . . , Ai, . . . , An and r ≡ B1 ← B2, . . . , Bm be a goal and
a rule with no variables in common, and let

g′ ≡← A1, . . . , Ai−1, B2, . . . , Bm,Ai+1, . . . , An.

If θg′ is a resolvent of g with r using θ , then the formula r implies:

r ′ ≡ ¬θg′ → ¬θg
= θ(A1 ∧ · · · ∧ Ai−1 ∧ B2 ∧ · · · ∧ Bm ∧ Ai+1 ∧ · · · ∧ An)→ θ(A1 ∧ · · · ∧ An).

Proof Let J be an instance over sch(P) satisfying r and let valuation ν be such that

J |= ν[θ(A1) ∧ · · · ∧ θ(Ai−1) ∧ θ(B2) ∧ · · · ∧ θ(Bm) ∧ θ(Ai+1) ∧ · · · ∧ θ(An)].

Because

J |= ν[θ(B2) ∧ · · · ∧ θ(Bm)]

and J |= B1 ← B2, . . . , Bm, J |= ν[θ(B1)]. That is, J |= ν[θ(Ai)]. Thus

J |= ν[θ(A1) ∧ · · · ∧ θ(An)].

Hence for each ν, J |= νr ′. Therefore J |= r ′. Thus each instance over sch(P) satisfying r

also satisfies r ′, so r implies r ′.

Using this lemma, we have the following:

Theorem 12.4.11 (Soundness of SLD resolution) Let PI be a program and g ≡←
A1, . . . , An a goal. If there exists an SLD-refutation of g with PI and mgu’s θ1, . . . , θq ,
then PI implies

θ1 ◦ · · · ◦ θq(A1 ∧ · · · ∧ An).

Proof Let J be some instance over sch(P) satisfying PI. Let g0 = g, . . . , gq = be an
SLD refutation of g with PI and for each j , let gj be a resolvent of gj−1 with some rule in
PI using some mgu θj . Then for each j , the rule that is used implies ¬gj → θj(¬gj−1) by
Lemma 12.4.10. Because J satisfies PI, for each j ,

J |= ¬gj → θj(¬gj−1).

12.4 Proof-Theoretic Approach 297

Clearly, this implies that for each j ,

J |= θj+1 ◦ · · · ◦ θq(¬gj)→ θj ◦ · · · ◦ θq(¬gj−1).

By transitivity, this shows that

J |= ¬gq → θ1 ◦ · · · ◦ θq(¬g0),

and so

J |= true→ θ1 ◦ · · · ◦ θq(¬g).

Thus J |= θ1 ◦ · · · ◦ θq(A1 ∧ · · · ∧ An).

We next prove the converse of the previous result (namely, the completeness of SLD
resolution).

Theorem 12.4.12 (Completeness of SLD resolution) Let PI be a program and g ≡←
A1, . . . , An a goal. If PI implies ¬g, then there exists a refutation of g with PI.

Proof Suppose that PI implies ¬g. Consider the set ground(PI) of instantiations of rules
in PI with constants in adom(P, I). Clearly, ground(PI)(∅) is a model of PI, so it satisfies
¬g. Thus there exists a valuation θ of the variables in g such that ground(PI)(∅) satisfies
¬θg. By Theorem 12.4.5, there exists a refutation of θg using ground(PI).

Let g0 = θg, . . . , gp = be that refutation. We show by induction on k that for each
k in [0, p],

(†) there exists a derivation g′0 = g, . . . , g′k with PI such that gk = θkg
′
k for some θk.

For suppose that (†) holds for each k. Then for k = p, there exists a derivation g′1 =
g, . . . , g′p with PI such that = gp = θpg

′
p for some θp, so g′p = . Therefore there exists

a refutation of g with PI.
The basis of the induction holds because g0 = θg = θg′0. Now suppose that (†) holds

for some k. The next step of the refutation consists of selecting some atom B of gk and
applying a rule r in ground(PI). In g′k select the atom B ′ with location in g′ corresponding
to the location of B in gk. Note that B = θkB

′. In addition, we know that there is rule
r ′′ = B ′′ ← A′′1 . . . A

′′
n in PI that has r for instantiation via some substitution θ ′′ (such

a pair B ′, r ′′ exists although it may not be unique). As usual, we can assume that the
variables in g′k are disjoint from those in r ′′. Let θk ⊕ θ ′′ be the substitution defined by
θk ⊕ θ ′′(x)= θk(x) if x is a variable in g′k, and θk ⊕ θ ′′(x)= θ ′′(x) if x is a variable in r ′′.
Clearly, θk ⊕ θ ′′(B ′)= θk ⊕ θ ′′(B ′′)= B so, by Lemma 12.4.8 (i), B ′ and B ′′ have some
mgu θ . Let g′k+1 be the resolvent of g′k with r ′′, B ′ using mgu θ . By the definition of mgu,
there exists a substitution θk+1 such that θk ⊕ θ ′′ = θ ◦ θk+1. Clearly, θk+1(g

′
k+1) = gk+1

and (†) holds for k + 1. By induction, (†) holds for each k.

298 Datalog

← S(1,x)

← T(1,x2), R(x2,a,x)

1:x1/1,x3/x

2:x1/1,x2/y2,x4/x2

← R(1,a,y2), R(y2,b,x3), T(x3,x2), R(x2,a,x)

3:x1/x3,x2/z2,x3/x2

← R(1,a,y2), R(y2,b,x3), R(x3,a,z2), T(z3,x2), R(x2,a,x)

← R(2,b,x3), R(x3,a,z2), R(z2,a,x2), R(x2,a,x)

5:x3/3

4:y2/2

← R(3,a,z2), R(z2,a,x2), R(x2,a,x)

6:z2/4

← R(4,a,x2), R(x2,a,x)

7:x2/5

← R(5,a,x)

8:x/6

Infinite
subtree

← R(1,a,y2), R(y2,a,x2), R(x2,a,x)

← R(1,a,1), R(1,a,x2), R(x2,a,x)

4:y2/1

no possible derivation

3:x1/1,x2/y2,x3/x2

2

Figure 12.6: SLD tree

SLD Trees

We have shown that SLD resolution is sound and complete. Thus it provides an adequate
top-down technique for obtaining the facts in the answer to a datalog program. To prove that
a fact is in the answer, one must search for a refutation of the corresponding goal. Clearly,
there are many refutations possible. There are two sources of nondeterminism in searching
for a refutation: (1) the choice of the selected atom, and (2) the choice of the clause to unify
with the atom. Now let us assume that we have fixed some golden rule, called a selection
rule, for choosing which atom to select at each step in a refutation. A priori, such a rule
may be very simple (e.g., as in Prolog, always take the leftmost atom) or in contrast very
involved, taking into account the entire history of the refutation. Once an atom has been
selected, we can systematically search for all possible unifying rules. Such a search can be
represented in an SLD tree. For instance, consider the tree of Fig. 12.6 for the program in
Example 12.4.2. The selected atoms are represented with boxes. Edges denote unifications
used. Given S(1, x), only one rule can be used. Given T (1, x2), two rules are applicable
that account for the two descendants of vertex T (1, x2). The first number in edge labels
denotes the rule that is used and the remaining part denotes the substitution. An SLD tree
is a representation of all the derivations obtained with a fixed selection rule for atoms.

12.4 Proof-Theoretic Approach 299

There are several important observations to be made about this particular SLD tree:

(i) It is successful because one branch yields .

(ii) It has an infinite subtree that corresponds to an infinite sequence of applications
of rule (2) of Example 12.4.2.

(iii) It has a blocking branch.

We can now explain (to a certain extent) the acronym SLD. SLD stands for selection
rule-driven linear resolution for definite clauses. Rule-driven refers to the rule used for
selecting the atom. An important fact is that the success or failure of an SLD tree does not
depend on the rule for selecting atoms. This explains why the definition of an SLD tree
does not specify the selection rule.

Datalog versus Logic Programming, Revisited

Having established the three semantics for datalog, we summarize briefly the main differ-
ences between datalog and the more general logic-programming (lp) framework.

Syntax: Datalog has only relation symbols, whereas lp uses also function symbols. Datalog
requires variables in rule heads to appear in bodies; in particular, all unit clauses are
ground.

Model-theoretic semantics: Due to the presence of function symbols in lp, models of lp
programs may be infinite. Datalog programs always have finite models. Apart from
this distinction, lp and datalog are identical with respect to model-theoretic semantics.

Fixpoint semantics: Again, the minimum fixpoint of the immediate consequence operator
may be infinite in the lp case, whereas it is always finite for datalog. Thus the fixpoint
approach does not necessarily provide a constructive semantics for lp.

Proof-theoretic semantics: The technique of SLD resolution is similar for datalog and lp,
with the difference that the computation of mgu’s becomes slightly more complicated
with function symbols (see Exercise 12.20). For datalog, the significance of SLD
resolution concerns primarily optimization methods inspired by resolution (such as
“magic sets”; see Chapter 13). In lp, SLD resolution is more important. Due to the
possibly infinite answers, the bottom-up approach of the fixpoint semantics may not
be feasible. On the other hand, every fact in the answer has a finite proof by SLD
resolution. Thus SLD resolution emerges as the practical alternative.

Expressive power: A classical result is that lp can express all recursively enumerable (r.e.)
predicates. However, as will be discussed in Part E, the expressive power of datalog
lies within ptime. Why is there such a disparity? A fundamental reason is that function
symbols are used in lp, and so an infinite domain of objects can be constructed from a
finite set of symbols. Speaking technically, the result for lp states that if S is a (possibly
infinite) r.e. predicate over terms constructed using a finite language, then there is an
lp program that produces for some predicate symbol exactly the tuples in S. Speaking
intuitively, this follows from the facts that viewed in a bottom-up sense, lp provides
composition and looping, and terms of arbitrary length can be used as scratch paper

300 Datalog

(e.g., to simulate a Turing tape). In contrast, the working space and output of range-
restricted datalog programs are always contained within the active domain of the input
and the program and thus are bounded in size.

Another distinction between lp and datalog in this context concerns the nature of
expressive power results for datalog and for query languages in general. Specifically,
a datalog program P is generally viewed as a mapping from instances of edb(P)
to instances of idb(P). Thus expressive power of datalog is generally measured in
comparison with mappings on families of database instances rather than in terms of
expressing a single (possibly infinite) predicate.

12.5 Static Program Analysis

In this section, the static analysis of datalog programs is considered.2 As with relational
calculus, even simple static properties are undecidable for datalog programs. In particular,
although tableau homomorphism allowed us to test the equivalence of conjunctive queries,
equivalence of datalog programs is undecidable in general. This complicates a systematic
search for alternative execution plans for datalog queries and yields severe limitations
to query optimization. It also entails the undecidability of many other problems related
to optimization, such as deciding when selection propagation (in the style of “pushing”
selections in relational algebra) can be performed, or when parallel evaluation is possible.

We consider three fundamental static properties: satisfiability, containment, and a new
one, boundedness. We exhibit a decision procedure for satisfiability. Recall that we showed
in Chapter 5 that an analogous property is undecidable for CALC. The decidability of
satisfiability for datalog may therefore be surprising. However, one must remember that,
although datalog is more powerful than CALC in some respects (it has recursion), it is less
powerful in others (there is no negation). It is the lack of negation that makes satisfiability
decidable for datalog.

We prove the undecidability of containment and boundedness for datalog programs
and consider variations or restrictions that are decidable.

Satisfiability

Let P be a datalog program. An intensional relation T is satisfiable by P if there exists
an instance I over edb(P) such that P(I)(T) is nonempty. We give a simple proof of the
decidability of satisfiability for datalog programs. We will soon see an alternative proof
based on context-free languages.

We first consider constant-free programs. We then describe how to reduce the general
case to the constant-free one.

To prove the result, we use an auxiliary result about instance homomorphisms that is of
some interest in its own right. Note that any mapping θ from dom to dom can be extended
to a homomorphism over the set of instances, which we also denote by θ .

2 Recall that static program analysis consists of trying to detect statically (i.e., at compile time)
properties of programs.

12.5 Static Program Analysis 301

Lemma 12.5.1 Let P be a constant-free datalog program, I, J two instances over sch(P),
q a positive-existential query over sch(P), and θ a mapping over dom. If θ(I)⊆ J, then
(i) θ(q(I))⊆ q(J), and (ii) θ(P (I))⊆ P(J).

Proof For (i), observe that q is monotone and that q ◦ θ ⊆ θ ◦ q (which is not necessary
if q has constants). Because TP can be viewed as a positive-existential query, a straightfor-
ward induction proves (ii).

This result does not hold for datalog programs with constants (see Exercise 12.21).

Theorem 12.5.2 The satisfiability of an idb relation T by a constant-free datalog pro-
gram P is decidable.

Proof Suppose that T is satisfiable by a constant-free datalog program P . We prove that
P(Ia)(T) is nonempty for some particular instance Ia. Let a be in dom. Let Ia be the
instance over edb(P) such that for each R in edb(P), Ia(R) contains a single tuple with a
in each entry. Because T is satisfiable by P , there exists I such that P(I)(T) �= ∅. Consider
the function θ that maps every constant in dom to a. Then θ(I) ⊆ Ia. By the previous
lemma, θ(P (I)) ⊆ P(Ia). Therefore P(Ia)(T) is nonempty. Hence T is satisfiable by P
iff P(Ia)(T) �= ∅.

Let us now consider the case of datalog programs with constants. Let P be a datalog
program with constants. For example, suppose that b, c are the only two constants occur-
ring in the program and thatR is a binary relation occurring inP . We transform the problem
into a problem without constants. Specifically, we replace R with nine new relations:

R��, Rb�, Rc�, R�b, R�c, Rbc, Rcb, Rbb, Rcc.

The first one is binary, the next four are unary, and the last four are 0-ary (i.e., are proposi-
tions). Intuitively, a factR(x, y) is represented by the factR��(x, y) if x, y are not in {b, c};
R(b, x) with x not in {b, c} is represented by Rb�(x), and similarly for Rc�, R�b, R�c. The
fact R(b, c) is represented by proposition Rbc(), etc. Using this kind of transformation for
each relation, one translates program P into a constant-free program P ′ such that T is sat-
isfiable by P iff Tw is satisfiable by P ′ for some string w of � or constants occurring in P .
(See Exercise 12.22a.)

Containment

Consider two datalog programs P,P ′ with the same extensional relations edb(P) and
a target relation T occurring in both programs. We say that P is included in P ′ with
respect to T , denoted P ⊆T P

′, if for each instance I over edb(P), P(I)(T)⊆ P ′(I)(T).
The containment problem is undecidable. We prove this by reduction of the containment
problem for context-free languages. The technique is interesting because it exhibits a
correspondence between proof trees of certain datalog programs and derivation trees of
context-free languages.

302 Datalog

We first illustrate the correspondence in an example.

Example 12.5.3 Consider the context-free grammar G = (V ,�,�, S), where V =
{S, T }, S is the start symbol, � = {a, b}, and the set � of production rules is

S→ T a

T → abT | aa.
The corresponding datalog program PG is the program of Example 12.4.1. A proof tree
and its corresponding derivation tree are shown in Fig. 12.3.

We next formalize the correspondence between proof trees and derivation trees.
A context-free grammar is a (�) grammar if the following hold:

(1) G is ε free (i.e., does not have any production of the form X→ ε, where ε
denotes the empty string) and

(2) the start symbol does not occur in any right-hand side of a production.

We use the following:

Fact It is undecidable, given (�) grammars G1,G2, whether L(G1)⊆ L(G2).

For each (�) grammar G, let PG, the corresponding datalog program, be constructed
(similar to Example 12.5.3) as follows: Let G = (V ,�,�, S). We may assume without
loss of generality that V is a set of relation names of arity 2 and � a set of elements from
dom. Then idb(PG)= V and edb(PG)= {R}, where R is a ternary relation. Let x1, x2, . . .

be an infinite sequence of distinct variables. To each production in �,

T → C1 . . . Cn,

we associate a datalog rule

T (x1, xn+1)← A1, . . . , An,

where for each i

• if Ci is a nonterminal T ′, then Ai = T ′(xi, xi+1);

• if Ci is a terminal b, then Ai = R(xi, b, xi+1).

Note that, for any proof tree of a fact S(a1, an) using PG, the sequence of its leaves is
(in this order)

R(a1, b1, a2), . . . , R(an−1, bn−1, an),

for some a2, . . . , an−1 and b1, . . . , bn−1. The connection between derivation trees ofG and
proof trees of PG is shown in the following.

12.5 Static Program Analysis 303

Proposition 12.5.4 Let G be a (�) grammar and PG be the associated datalog pro-
gram constructed as just shown. For each a1, . . . , an, b1, . . . , bn−1, there is a proof tree
of S(a1, an) from PG with leaves R(a1, b1, a2), . . . , R(an−1, bn−1, an) (in this order) iff
b1 . . . bn−1 is in L(G).

The proof of the proposition is left as Exercise 12.25. Now we can show the following:

Theorem 12.5.5 It is undecidable, given P,P ′ (with edb(P) = edb(P ′)) and T ,
whether P ⊆T P

′.

Proof It suffices to show that

(‡)
for each pair G1,G2 of (�) grammars,

L(G1)⊆ L(G2)⇔ PG1 ⊆S PG2.

Suppose (‡) holds and T containment is decidable. Then we obtain an algorithm to decide
containment of (�) grammars, which contradicts the aforementioned fact.

Let G2,G2 be two (�) grammars. We show here that

L(G1)⊆ L(G2)⇒ PG1 ⊆S PG2.

(The other direction is similar.) Suppose that L(G1)⊆ L(G2). Let I be over edb(PG1) and
S(a1, an) be in PG1(I). Then there exists a proof tree of S(a1, an) from PG1 and I, with
leaves labeled by facts

R(a1, b1, a2), . . . , R(an−1, bn−1, an),

in this order. By Proposition 12.5.4, b1 . . . bn−1 is in L(G1). Because L(G1) ⊆ L(G2),
b1 . . . bn−1 is inL(G2). By the proposition again, there is a proof tree of S(a1, an) from PG2

with leaves R(a1, b1, a2), . . . , R(an−1, bn−1, an), all of which are facts in I. Thus S(a1, an)

is in PG2(I), so PG1 ⊆S PG2.

Note that the datalog programs used in the preceding construction are very particular:
They are essentially chain programs. Intuitively, in a chain program the variables in a rule
body form a chain. More precisely, rules in chain programs are of the form

A0(x0, xn)← A1(x0, x1), A2(x1, x2), . . . , An(xn−1, xn).

The preceding proof can be tightened to show that containment is undecidable even for
chain programs (see Exercise 12.26).

The connection with grammars can also be used to provide an alternate proof of the
decidability of satisfiability; satisfiability can be reduced to the emptiness problem for
context-free languages (see Exercise 12.22c).

Although containment is undecidable, there is a closely related, stronger property
which is decidable—namely, uniform containment. For two programs P,P ′ over the same

304 Datalog

set of intensional and extensional relations, we say that P is uniformly contained in P ′,
denoted P ⊆ P ′, iff for each I over sch(P), P(I) ⊆ P ′(I). Uniform containment is a
sufficient condition for containment. Interestingly, one can decide uniform containment.
The test for uniform containment uses dependencies studied in Part D and the fundamental
chase technique (see Exercises 12.27 and 12.28).

Boundedness

A key problem for datalog programs (and recursive programs in general) is to estimate the
depth of recursion of a given program. In particular, it is important to know whether for a
given program the depth is bounded by a constant independent of the input. Besides being
meaningful for optimization, this turns out to be an elegant mathematical problem that has
received a lot of attention.

A datalog program P is bounded if there exists a constant d such that for each I over
edb(P), stage(P, I) ≤ d . Clearly, if a program is bounded it is essentially nonrecursive,
although it may appear to be recursive syntactically. In some sense, it is falsely recursive.

Example 12.5.6 Consider the following two-rule program:

Buys(x, y)← Trendy(x),Buys(z, y) Buys(x, y)← Likes(x, y)

This program is bounded because Buys(z,y) can be replaced in the body by Likes(z,y),
yielding an equivalent recursion-free program. On the other hand, the program

Buys(x, y)← Knows(x, z),Buys(z, y) Buys(x, y)← Likes(x, y)

is inherently recursive (i.e., is not equivalent to any recursion-free program).

It is important to distinguish truly recursive programs from falsely recursive (bounded)
programs. Unfortunately, boundedness cannot be tested.

Theorem 12.5.7 Boundedness is undecidable for datalog programs.

The proof is by reduction of the PCP (see Chapter 2). One can even show that bound-
edness remains undecidable under strong restrictions, such as that the programs that are
considered (1) are constant-free, (2) contain a unique recursive rule, or (3) contain a unique
intensional relation. Decidability results have been obtained for linear programs or chain-
rule programs (see Exercise 12.31).

Bibliographic Notes

It is difficult to attribute datalog to particular researchers because it is a restriction or
extension of many previously proposed languages; some of the early history is discussed
in [MW88a]. The name datalog was coined (to our knowledge) by David Maier.

Bibliographic Notes 305

Many particular classes of datalog programs have been investigated. Examples are the
class of monadic programs (all intensional relations have arity one), the class of linear
programs (in the body of each rule of these programs, there can be at most one relation that
is mutually recursive with the head relation; see Chapter 13), the class of chain programs
[UG88, AP87a] (their syntax resembles that of context-free grammars), and the class of
single rule programs or sirups [Kan88] (they consist of a single nontrivial rule and a trivial
exit rule).

The fixpoint semantics that we considered in this chapter is due to [CH85]. However,
it has been considered much earlier in the context of logic programming [vEK76, AvE82].
For logic programming, the existence of a least fixpoint is proved using [Tar55].

The study of stage functions stage(d,H) is a major topic in [Mos74], where they are
defined for finite structures (i.e., instances) as well as for infinite structures.

Resolution was originally proposed in the context of automatic theorem proving. Its
foundations are due to Robinson [Rob65]. SLD resolution was developed in [vEK76].
These form the basis of logic programming introduced by Kowalski [Kow74] and
[CKRP73] and led to the language Prolog. Nice presentations of the topic can be found
in [Apt91, Llo87]. Standard SLD resolution is more general than that presented in this
chapter because of the presence of function symbols. The development is similar except
for the notion of unification, which is more involved. A survey of unification can be found
in [Sie88, Kni89].

The programming language Prolog proposed by Colmerauer [CKRP73] is based on
SLD resolution. It uses a particular strategy for searching for SLD refutations. Vari-
ous ways to couple Prolog with a relational database system have been considered (see
[CGT90]).

The undecidability of containment is studied in [CGKV88, Shm87]. The decidability
of uniform containment is shown in [CK86, Sag88]. The decidability of containment for
monadic programs is studied in [CGKV88]. The equivalence of recursive and nonrecursive
datalog programs is shown to be decidable in [CV92]. The complexity of this problem is
considered in [CV94].

Interestingly, bounded recursion is defined and used early in the context of universal
relations [MUV84]. Example 12.5.6 is from [Nau86]. Undecidability results for bound-
edness of various datalog classes are shown in [GMSV87, GMSV93, Var88, Abi89]. De-
cidability results for particular subclasses are demonstrated in [Ioa85, Nau86, CGKV88,
NS87, Var88].

Boundedness implies that the query expressed by the program is a positive existential
query and therefore is expressible in CALC (over finite inputs). What about the converse?
If infinite inputs are allowed, then (by a compactness argument) unboundedness implies
nonexpressibility by CALC. But in the finite (database) case, compactness does not hold,
and the question remained open for some time. Kolaitis observed that unboundedness does
not imply nonexpressibility by CALC over finite structures for datalog with inequalities
(x �= y). (We did not consider comparators �=, <,≤, etc. in this chapter.) The question
was settled by Ajtai and Gurevich [AG89], who showed by an elegant argument that no
unbounded datalog program is expressible in CALC, even on finite structures.

Another decision problem for datalog concerns arises from the interaction of datalog
with functional dependencies. In particular, it is undecidable, given a datalog program P ,

306 Datalog

set � of fd’s on edb(P), and set of fd’s on idb(P) whether P(I) |= whenever I |=�

[AH88].
The expressive power of datalog has been investigated in [AC89, ACY91, CH85,

Shm87, LM89, KV90c]. Clearly, datalog expresses only monotonic queries, commutes
with homomorphisms of the database (if there are no constants in the program), and can be
evaluated in polynomial time (see also Exercise 12.11). It is natural to wonder if datalog
expresses precisely those queries. The answer is negative. Indeed, [ACY91] shows that the
existence of a path whose length is a perfect square between two nodes is not expressible
in datalog�= (datalog augmented with inequalities x �= y), and so not in datalog. This
is a monotonic, polynomial-time query commuting with homomorphisms. The parallel
complexity of datalog is surveyed in [Kan88].

The function symbols used in logic programming are interpreted over a Herbrand do-
main and are prohibited in datalog. However, it is interesting to incorporate arithmetic func-
tions such as addition and multiplication into datalog. Such functions can also be viewed
as infinite base relations. If these are present, it is possible that the bottom-up evaluation
of a datalog program will not terminate. This issue was first studied in [RBS87], where
finiteness dependencies were introduced. These dependencies can be used to describe how
the finiteness of the range of a set of variables can imply the finiteness of the range of
another variable. [For example, the relation +(x, y, z) satisfies the finiteness dependen-
cies {x, y}❀ {z}, {x, z}❀ {y}, and {y, z}❀ {x}.] Safety of datalog programs with infinite
relations constrained by finiteness dependencies is undecidable [SV89]. Various syntac-
tic conditions on datalog programs that ensure safety are developed in [RBS87, KRS88a,
KRS88b, SV89]. Finiteness dependencies were used to develop a safety condition for the
relational calculus with infinite base relations in [EHJ93]. Safety was also considered in
the context of data functions (i.e., functions whose extent is predefined).

Exercises

Exercise 12.1 Refer to the Parisian Metro database. Give a datalog program that yields, for
each pair of stations (a, b), the stations c such that c is reachable (1) from both a and b; and (2)
from a or b.

Exercise 12.2 Consider a database consisting of the Metro and Cinema databases, plus a
relation Theater-Station giving for each theater the closest metro station. Suppose that you live
near the Odeon metro station. Write a program that answers the query “Near which metro station
can I see a Bergman movie?” (Having spent many years in Los Angeles, you do not like walking,
so your only option is to take the metro at Odeon and get off at the station closest to the theater.)

Exercise 12.3 (Same generation) Consider a binary relation Child_of , where the intended
meaning of Child_of (a, b) is that a is the child of b. Write a datalog program computing the
set of pairs (c, d), where c and d have a common ancestor and are of the same generation with
respect to this ancestor.

Exercise 12.4 We are given two directed graphs Gblack and Gwhite over the same set V of
vertexes, represented as binary relations. Write a datalog program P that computes the set of
pairs (a, b) of vertexes such that there exists a path from a to b where black and white edges
alternate, starting with a white edge.

Exercises 307

Exercise 12.5 Suppose we are given an undirected graph with colored vertexes represented
by a binary relation Color giving the colors of vertexes and a binary relation Edge giving the
connection between them. (Although Edge provides directed edges, we ignore the direction, so
we treat the graph as undirected.) Say that a vertex is good if it is connected to a blue vertex
(blue is a constant) or if it is connected to an excellent vertex. An excellent vertex is a vertex
that is connected to an outstanding vertex and to a red vertex. An outstanding vertex is a vertex
that is connected to a good vertex, an excellent one, and a yellow one. Write a datalog program
that computes the excellent vertexes.

Exercise 12.6 Consider a directed graph G represented as a binary relation. Show a datalog
program that computes a binary relation T containing the pairs (a, b) for which there is a path
of odd length from a to b in G.

Exercise 12.7 Given a directed graph G represented as a binary relation, write a datalog
program that computes the vertexes x such that (1) there exists a cycle of even length passing
through x; (2) there is a cycle of odd length through x; (3) there are even- and odd-length cycles
through x.

Exercise 12.8 Consider the following program P :

R(x, y)←Q(y, x), S(x, y)

S(x, y)←Q(x, y), T (x, z)

T (x, y)←Q(x, z), S(z, y)

Let I be a relation over edb(P). Describe the output of the program. Now suppose the first rule
is replaced by R(x, y)←Q(y, x). Describe the output of the new program.

Exercise 12.9 Prove Lemma 12.3.1.

Exercise 12.10 Prove that datalog queries are monotone.

Exercise 12.11 Suppose P is some property of graphs definable by a datalog program. Show
that P is preserved under extensions and homomorphisms. That is, if G is a graph satisfying P ,
then (1) every supergraph of G satisfies P and (2) if h is a graph homomorphism, then h(G)
satisfies P .

Exercise 12.12 Show that the following graph properties are not definable by datalog
programs:

(i) The number of nodes is even.

(ii) There is a nontrivial cycle (a trivial cycle is an edge 〈a, a〉 for some vertex a).

(iii) There is a simple path of even length between two specified nodes.

Show that nontrivial cycles can be detected if inequalities of the form x �= y are allowed in rule
bodies.

♠Exercise 12.13 [ACY91] Consider the query perfect square on graphs: Is there a path (not
necessarily simple) between nodes a and b whose length is a perfect square?

(i) Prove that perfect square is preserved under extension and homomorphism.

(ii) Show that perfect square is not expressible in datalog.

Hint: For (ii), consider “words” consisting of simple paths from a to b, and prove a pumping
lemma for words “accepted” by datalog programs.

308 Datalog

Exercise 12.14 Present an algorithm that, given the set of proof trees of depth i with a program
P and instance I, constructs all proof trees of depth i + 1. Make sure that your algorithm
terminates.

Exercise 12.15 Let P be a datalog program, I an instance of edb(P), and R in idb(P). Let u
be a vector of distinct variables of the arity of R. Demonstrate that

P(I)(R)= {θR(u) | there is a refutation of ← R(u) using PI and

substitutions θ1, . . . θn such that θ = θ1 ◦ · · · ◦ θn}.
Exercise 12.16 (Substitution lemma) Let PI be a program, g a goal, and θ a substitution. Prove
that if there exists an SLD refutation of θg with PI and ν, there also exists an SLD refutation of
g with PI and θ ◦ ν.

Exercise 12.17 Reprove Theorem 12.3.4 using Tarski’s and Kleene’s theorems stated in Re-
mark 12.3.5.

Exercise 12.18 Prove the “if part” of Theorem 12.4.5.

Exercise 12.19 Prove Lemma 12.4.8.

�Exercise 12.20 (Unification with function symbols) In general logic programming, one can
use function symbols in addition to relations. A term is then either a constant in dom, a variable
in var, or an expression f (t1, . . . , tn), where f is an n-ary function symbol and each ti is a term.
For example, f (g(x, 5), y, f (y, x, x)) is a term. In this context, a substitution θ is a mapping
from a subset of var into the set of terms. Given a substitution θ , it is extended in the natural
manner to include all terms constructed over the domain of θ . Extend the definitions of unifier
and mgu to terms and to atoms permitting terms. Give an algorithm to obtain the mgu of two
atoms.

Exercise 12.21 Prove that Lemma 12.5.1 does not generalize to datalog programs with
constants.

Exercise 12.22 This exercise develops three alternative proofs of the generalization of Theo-
rem 12.5.2 to datalog programs with constants. Prove the generalization by

(a) using the technique outlined just after the statement of the theorem

(b) making a direct proof using as input an instance IC∪{a}, where C is the set of all
constants occurring in the program and a is new, and where each relation in I contains
all tuples constructed using C ∪ {a}

(c) reducing to the emptiness problem for context-free languages.

♠Exercise 12.23 (datalog �=) The language datalog �= is obtained by extending datalog with a
new predicate �= with the obvious meaning.

(a) Formally define the new language.

(b) Extend the least-fixpoint and minimal-model semantics to datalog �=.

� (c) Show that satisfiability remains decidable for datalog �= and that it can be tested in
exponential time with respect to the size of the program.

�Exercise 12.24 Which of the properties in Exercise 12.12 are expressible in datalog �=?

Exercise 12.25 Prove Proposition 12.5.4.

Exercises 309

Exercise 12.26 Prove that containment of chain datalog programs is undecidable. Hint: Mod-
ify the proof of Theorem 12.5.5 by using, for each b ∈ �, a relation Rb such that Rb(x, y) iff
R(x, b, y).

Exercise 12.27 Prove that containment does not imply uniform containment by exhibiting two
programs P,Q over the same edb’s and with S as common idb such that P ⊆S Q but P �⊆Q.

♠Exercise 12.28 (Uniform containment [CK86, Sag88]) Prove that uniform containment of two
datalog programs is decidable.

Exercise 12.29 Prove that each nr-datalog program is bounded.

♠Exercise 12.30 [GMSV87, Var88] Prove Theorem 12.5.7. Hint: Reduce the halting problem
of Turing machines on an empty tape to boundedness of datalog programs. More precisely, have
the edb encode legal computations of a Turing machine on an empty tape, and have the program
verify the correctness of the encoding. Then show that the program is unbounded iff there are
unbounded computations of the machine on the empty tape.

Exercise 12.31 (Boundedness of chain programs) Prove decidability of boundedness for chain
programs. Hint: Reduce testing for boundedness to testing for finiteness of a context-free
language.

♠Exercise 12.32 This exercise demonstrates that datalog is likely to be stronger than positive
first order extended by generalized transitive closure.

(a) [Coo74] Recall that a single rule program (sirup) is a datalog program with one
nontrivial rule. Show that the sirup

R(x)← R(y), R(z), S(x, y, z)

is complete in ptime. (This has been called variously the graph accessibility problem
and the blue-blooded water buffalo problem; a water buffalo is blue blooded only if
both of its parents are.)

(b) [KP86] Show that the in some sense simpler sirup

R(x)← R(y), R(z), T (y, x), T (x, z)

is complete in ptime.

310 Datalog

(c) [Imm87b] The generalized transitive closure operator is defined on relations with
arity 2n so that TC(R) is the output of the datalog program

ans(x1, . . . , x2n)← R(x1, . . . , x2n)

ans(x1, . . . , xn, z1, . . . , zn)← R(x1, . . . , xn, y1, . . . , yn),

ans(y1, . . . , yn, z1, . . . , zn)

Show that the positive first order extended with generalized transitive closure is in
logspace.

