
11 Design and Dependencies

When the only tool you have is a hammer,
everything begins to look like a nail.

—Anonymous

Alice: Will we use a hammer for schema design?
Riccardo: Sure: decomposition, semantic modeling, . . .

Vittorio: And each provides nails to which the data must fit.
Sergio: The more intricate the hammer, the more intricate the nail.

We have discussed earlier applications of dependencies in connection with query
optimization (Section 8.4) and user views (Section 10.2). In this chapter, we briefly

consider how dependencies are used in connection with the design of relational database
schemas.

The problem of designing database schemas is complex and spans the areas of cog-
nitive science, knowledge representation, software practices, implementation issues, and
theoretical considerations. Due to the interaction of these many aspects (some of them in-
tegrally related to how people think and perceive the world), we can only expect a relatively
narrow and somewhat simplistic contribution from theoretical techniques. As a result, the
primary focus of this chapter is to introduce the kinds of formal tools that are used in the
design process; a broader discussion of how to use these tools in practice is not attempted.
The interested reader is referred to the Bibliographic Notes, which indicate where more
broad-based treatments of relational schema design can be found.

In the following discussion, designing a relational schema means coming up with a
“good” way of grouping the attributes of interest into tables, yielding a database schema.
The choice of a schema is guided by semantic information about the application data
provided by the designer. There are two main ways to do this, and each leads to a different
approach to schema design.

Semantic data model: In this approach (Section 11.1), the application data is first described
using a model with richer semantic constructs than relations. Such models are called
“semantic data models.” The schema in the richer model is then translated into a
relational schema. The hope is that the use of semantic constructs will naturally lead
to specifying good schemas.

Refinement of relational schema: This approach (Section 11.2) starts by specifying an
initial relational schema, augmented with dependencies (typically fd’s and mvd’s). The
design process uses the dependencies to improve the schema. But what is it that makes

240

Design and Dependencies 241

one schema better than another? This is captured by the notion of “normal form” for
relational schemas, a central notion in design theory.

Both of these approaches focus on the transformation of a schema S1 into a relational
schema S2. Speaking in broad terms, three criteria are used to evaluate the result of this
transformation:

(1) Preservation of data;

(2) Desirable properties of S2, typically described using normal forms; and

(3) Preservation of “meta-data” (i.e., information captured by schema and depen-
dencies).

Condition (1) requires that information not be lost when instances of S1 are represented in
S2. This is usually formalized by requiring that there be a “natural” mapping τ : Inst(S1)→
Inst(S2) that is one-to-one. As we shall see, the notion of “natural” can vary, depending on
the data model used for S1.

Criterion (2) has been the focus of considerable research, especially in connection with
the approach based on refining relational schemas. In this context, the notion of relational
schema is generalized to incorporate dependencies, as follows: A relation schema is a pair
(R,�), where R is a relation name and � is a set of dependencies over R. Similarly, a
database schema is a pair (R, �), where R is a database schema as before, and � is a set of
dependencies over R. Some of these may be tagged by a single relation (i.e., have the form
Rj : σ , where σ is a dependency over Rj ∈ R). Others, such as ind’s, may involve pairs
of relations. More generally, some dependencies might range over the full set of attributes
occurring in R. (This requires a generalization of the notion of dependency satisfaction,
which is discussed in Section 11.3.)

With this notation established, we return to criterion (2). In determining whether one
relational schema is better than another, the main factors that have been considered are
redundancy in the representation of data and update anomalies. Recall that these were
illustrated in Section 8.1, using the relations Movies and Showings. We concluded there
that certain schemas yielded undesirable behavior. This resulted from the nature of the
information contained in the database, as specified by a set of dependencies.

Although the dependencies are in some sense the cause of the problems, they also
suggest ways to eliminate them. For example, the fd

Movies: Title→ Director

suggests that the attribute Director is a characteristic of Title, so the two attributes be-
long together and can safely be represented in isolation from the other data. It should be
clear that one always needs some form of semantic information to guide schema design;
in the absence of such information, one cannot distinguish “good” schemas from “bad”
ones (except for trivial cases). As will be seen, the notion of normal form captures some
characteristics of “good” schemas by guaranteeing that certain kinds of redundancies and
update anomalies will not occur. It will also be seen that the semantic data model approach
to schema design can lead to relational schemas in normal form.

242 Design and Dependencies

In broad terms, the intuition behind criterion (3) is that properties of data captured by
schema S1 (e.g., functional or inclusion relationships) should also be captured by schema
S2. In the context of refining relational schemas, a precise meaning will be given for this
criterion in terms of “preservation” of dependencies. We shall see that there is a kind of
trade-off between criteria (2) and (3).

The approach of refining relational schemas typically makes a simplifying assump-
tion called the “pure universal relation assumption” (pure URA). Intuitively, this states that
the input schema S1 consists of a single relation schema, possibly with some dependen-
cies. Section 11.3 briefly considers this assumption in a more general light. In addition, the
“weak” URA is introduced, and the notions of dependency satisfaction and query interpre-
tation are extended to this context.

This chapter is more in the form of a survey than the previous chapters, for several
reasons. As noted earlier, more broad-based treatments of relational schema design may
be found elsewhere and require a variety of tools complementary to formal analysis. The
tools presented here can at best provide only part of the skeleton of a design methodology
for relational schemas. Normal forms and the universal relation assumption were active
research topics in the 1970s and early 1980s and generated a large body of results. Some
of that work is now considered somewhat unfashionable, primarily due to the emergence
of new data models. However, we mention these topics briefly because (1) they lead to
interesting theoretical issues, and (2) we are never secure from a change of fashion.

11.1 Semantic Data Models

In this section we introduce semantic data models and describe how they are used in rela-
tional database design. Semantic data models provide a framework for specifying database
schemas that is considerably richer than the relational model. In particular, semantic mod-
els are arguably closer than the relational model to ways that humans organize information
in their own thinking. The semantic data models are precursors of the recently emerging
object-oriented database models (presented in a more formal fashion in Chapter 21) and
are thus of interest in their own right.

As a vehicle for our discussion, we present a semantic data model, called loosely the
generic semantic model (GSM). (This is essentially a subset of the IFO model, one of the
first semantic models defined in a formal fashion.) We then illustrate how schemas from
this model can be translated into relational schemas. Our primary intention is to present
the basic flavor of the semantic data model approach to relational schema design and some
formal results that can be obtained. The presentation itself is somewhat informal so that the
notation does not become overly burdensome.

In many practical contexts, the semantic model used is the Entity-Relationship model
(ER model) or one of its many variants. The ER model is arguably the first semantic data
model that appeared in the literature. We use the GSM because it incorporates several
features of the semantic modeling literature not present in the ER model, and because the
GSM presents a style closer to object-oriented database models.

11.1 Semantic Data Models 243

GSM Schemas

Figure 11.1 shows the schema CINEMA-SEM from the GSM, which can be used to
represent information on movies and theaters. The major building blocks of such schemas
are abstract classes, attributes, complex value classes, and the ISA hierarchy; these will be
considered briefly in turn.

The schema of Fig. 11.1 shows five classes that hold abstract objects: Person, Direc-
tor, Actor, Movie, and Theater. These correspond to collections of similar objects in the
world. There are two kinds of abstract class: primary classes, shown using diamonds, and
subclasses shown using circles. This distinction will be clarified further when ISA relation-
ships are discussed.

Instances of semantic schemas are constructed from the usual printable classes (e.g.,
string, integer, float, etc.) and “abstract” classes. The printable classes correspond to (sub-
sets of) the domain dom used in the relational model. The printable classes are indicated
using squares; in Fig. 11.1 we have labeled these to indicate the kind of values that popu-
late them. Conceptually, the elements of an abstract class such as Person are actual persons
in the world; in the formal model internal representations for persons are used. These inter-
nal representations have come to be known as object identifiers (OIDs). Because they are
internal, it is usually assumed that OIDs cannot be presented explicitly to users, although
programming and query languages can use variables that hold OIDs. The notion of instance
will be defined more completely later and is illustrated in Example 11.1.1 and Fig. 11.2.

Attributes provide one mechanism for representing relationships between objects and
other objects or printable values; they are drawn using arrows. For example, the Person
class has attributes name and citizenship, which associate strings with each person object.
These are examples of single-valued attributes. (In this schema, all attributes are assumed
to be total.) Multivalued attributes are also allowed; these map each object to a set of
objects or printable values and are denoted using arrows with double heads. For example,
acts_in maps actors to the movies that they have acted in. It is common to permit inverse
constraints between pairs of attributes. For example, consider the relationship between
actors and movies. It can be represented using the multivalued attribute acts_in on Actor
or the multivalued attribute actors on Movie. In this schema, we assume that the attri-
butes acts_in and actors are constrained to be inverses of each other, in the sense that
m ∈ acts_in(a) iff a ∈ actor(m). A similar constraint is assumed between the attributes
associating movies with directors.

In the schema CINEMA-SEM, the Pariscope node is an example of a complex value
class. Members of the underlying class are triples whose coordinates are from the classes
Theater, Time, and Movie, respectively. In the GSM, each complex value is the result of
one application of the tuple construct. This is indicated using a node of the form ⊗, with
components indicated using dashed arrows. The components of each complex value can be
printable, abstract, or complex values. However, there cannot be a directed cycle in the set
of edges used to define the complex values. As suggested by the attribute price, a complex
value class may have attributes. Complex value classes can also serve as the range of an
attribute, as illustrated by the class Award.

Complex values are of independent interest and are discussed in some depth in Chap-
ter 20. Complex values generally include hierarchical structures built from a handful of

244 Design and Dependencies

Address PhoneName

Theater Time

Pariscope

Title

Citizen-
ship

Name

Person

Award

PrizeName

Movie Director

Acts_in

Actors

Price

Actor

Figure 11.1: The schema CINEMA-SEM in the Generic Semantic Model

11.1 Semantic Data Models 245

basic constructors, including tuple (as shown here) set, and sometimes others such as bag
and list. Rich complex value models are generally incorporated into object-oriented data
models and into some semantic data models. Some constructs for complex values, such as
set, cannot be simulated directly using the pure relational model (see Exercise 11.24).

The final building block of the GSM is the ISA relationship, which represents set
inclusion. In the example schema of Fig. 11.1, the ISA relationships are depicted by double-
shafted arrows and indicate that the set of Director is a subset of Person, and likewise
that Actor is a subset of Person. In addition to indicating set inclusion, ISA relationships
indicate a form of subtyping relationship, or inheritance. Specifically, if class B ISA class
A, then each attribute of A is also relevant (and defined for) elements of class B. In the
context of semantic models, this should be no surprise because the elements of B are
elements of A.

In the GSM, the graph induced by ISA relationships is a directed acyclic graph (DAG).
The root nodes are primary abstract classes (represented with diamonds), and all other
nodes are subclass nodes (represented with circles). Each subclass node has exactly one
primary node above it. Complex value classes cannot participate in ISA relationships.

In the GSM, the tuple and multivalued attribute constructs are somewhat redundant: A
multivalued attribute is easily simulated using a tuple construct. Such redundancy is typical
of semantic models: The emphasis is on allowing schemas that correspond closely to the
way that users think about an application. On a bit of a tangent, we also note that the tuple
construct of GSM is close to the relationship construct of the ER model.

GSM Instances

Let S be a GSM schema. It is assumed that a fixed (finite or infinite) domain is associated
to each printable class in S. We also assume a countably infinite set obj of OIDs.

An instance of S is a function I whose domain is the set of primary, subclass, and
complex value classes of S and the set of attributes of S. For primary class C, I(C) is a
finite set of OIDs, disjoint from I(C′) for each other primary class C′. For each subclass
D, I(D) is a set of OIDs, such that the inclusions indicated by the ISA relationships of S
are satisfied. For complex value class C with components D1, . . . , Dn, I(C) is a finite set
of tuples 〈d1, . . . , dn〉, where di ∈ I(Di) if Di is an abstract or complex value class, and di
is in the domain of Di if Di is a printable class. For a single-valued attribute f from C to
C′, I(f) is a function from I(C) to I(C′) (or to the domain of C′, if C′ is printable). For a
multivalued attribute f from C to C′, I(f) is a function from I(C) to finite subsets of I(C′)
(or the domain of C′, if C′ is printable). Given instance I, attribute f from C to C′, and
object o in I(C), we often write f (o) to denote [I(f)](o).

Example 11.1.1 Part of a very small instance I1 of CINEMA-SEM is shown in
Fig. 11.2. The values of complex value Award, the attributes award, address, and phone
are not shown. The symbols o1, o2, etc., denote OIDs.

Consider an instance I′ that is identical to I1, except that o2 is replaced by o8 ev-
erywhere. Because OIDs serve only as internal representations that cannot be accessed

246 Design and Dependencies

I1(Person)= name(o1)= Alice citizenship(o1)= Great Britain
{o1, o2, o3} name(o2)= Allen citizenship(o2)= United States

name(o3)= Keaton citizenship(o3)= United States

I1(Director)= {o2} directed(o2)= {o4, o5}

I1(Actor)= {o2, o3} acts_in(o2)= {o4, o5}
acts_in(o3)= {o5}

I1(Movie)= {o4, o5} title(o4)= Take the Money
and Run

title(o5)= Annie Hall
director(o4)= o2 actors(o4)= {o2}
director(o5)= o2 actors(o5)= {o2, o3}

I1(Theater)= {o6} name(o6)= Le Champo

I1(Pariscope)= price(〈o6, 20:00, o4〉)= 30FF
{〈o6, 20:00, o4〉}

Figure 11.2: Part of an instance I1 of CINEMA-SEM

explicitly, I1 and I′ are considered to be identical in terms of the information that they
represent.

Let S be a GSM schema. An OID isomorphism is a function µ that is a permutation on
the set obj of OIDs and leaves all printables fixed. Such functions are extended to Inst(S)
in the natural fashion. Two instances I and I′ are OID equivalent, denoted I ≡OID I′, if
there is an OID isomorphism µ such that µ(I)= I′. This is clearly an equivalence relation.
As suggested by the preceding example, if two instances are OID equivalent, then they
represent the same information. The formalism of OID equivalence will be used later when
we discuss the relational simulation of GSM.

The GSM is a very basic semantic data model, and many variations on the semantic
constructs included in the GSM have been explored in the literature. For example, a variety
of simple constraints can be incorporated, such as cardinality constraints on attributes
and disjointness between subclasses (e.g., that Director and Actor are disjoint). Another
variation is to require that a class be “dependent” on an attribute (e.g., that each Award
object must occur in the image of some Actor) or on a complex value class. More complex
constraints based on first-order sentences have also been explored. Some semantic models
support different kinds of ISA relationships, and some provide “derived data” (i.e., a form
of user view incorporated into the base schema).

11.1 Semantic Data Models 247

Translating into the Relational Model

We now describe an approach for translating semantic schemas into relational database
schemas. As we shall see, the semantics associated with the semantic schema will yield
dependencies of various forms in the relational schema.

A minor problem to be surmounted is that in a semantic model, real-world objects
such as persons can be represented using OIDs, but printable classes must be used in the
pure relational model. To resolve this, we assume that each primary abstract class has a
key, that is, a set {k1, . . . , kn} of one or more attributes with printable range such that for
each instance I and pair o, o′ of objects in the class, o = o′ iff k1(o)= k1(o

′) and . . . and
kn(o)= kn(o

′). (Although more than one key might exist for a primary class, we assume
that a single key is chosen.) In the schema CINEMA-SEM, we assume that (person_)
name is the key for Person, that title is the key for Movie, and that (theater_)name is the
key for Theater. (Generalizations of this approach permit the composition of attributes to
serve as part of a key; e.g., including in the key for Movie the composition director ◦ name,
which would give the name of the director of the movie.)

An alternative to the use of keys as just described is to permit the use of surrogates.
Informally, a surrogate of an object is a unique, unchanging printable value that is associ-
ated with the object. Many real-world objects have natural surrogates (e.g., Social Security
number for persons in the United States or France; or Invoice Number for invoices in a
commercial enterprise). In other cases, abstract surrogates can be used.

The kernel of the translation of GSM schemas into relational ones concerns how ob-
jects in GSM instances can be represented using (tuples of) printables. For each class C
occurring in the GSM schema, we associate a set of relational attributes, called the repre-
sentation ofC, and denoted rep(C). For a printable class C, rep(C) is a single attribute hav-
ing this sort. For abstract class C, rep(C) is a set of attributes corresponding to the key at-
tributes of the primary class above C. For a complex value class C = [C1, . . . , Cm], rep(C)
consists of (disjoint copies of) all of the attributes occurring in rep(C1), . . . , rep(Cm).

Translation of a GSM schema into a relation schema is illustrated in the following
example.

Example 11.1.2 One way to simulate schema CINEMA-SEM in the relational model
is to use the schema CINEMA-REL, which has the following schema:

Person [name, citizenship]
Director [name]
Actor [name]
Acts_in [name, title]
Award [prize, year]
Has_Award [name, prize, year]

Movie [title, director_name]

Theater [theater_name, address, phone]

Pariscope [theater_name, time, title, price]

248 Design and Dependencies

Person name citizenship Movie title director_name

Alice Great Britain Take the Money and Run Allen

Allen United States Annie Hall Allen

Keaton United States

Pariscope theater_name time title price

Le Champo 20:00 Take the Money and Run 30FF

Figure 11.3: Part of a relational instance I2 that simulates I1

Figure 11.3 shows three relations in the relational simulation I2 of the instance I1 of
Fig. 11.2.

In schema CINEMA-REL, both Actor and Acts_in are included in case there are one
or more actors that did not act in any movie. For similar reasons, Acts_in and Has_Award
are separated.

In contrast, we have assumed that each person has a citizenship (i.e., that citizenship is
a total function). If not, then two relations would be needed in place of Person. Analogous
remarks hold for directors, movies, theaters, and Pariscope objects.

In schema CINEMA-REL, we have not explicitly provided relations to represent the
attributes directed of Director or actors of Movie. This is because both of these are inverses
of other attributes, which are represented explicitly (by Movie and Acts_in, respectively).

If we were to consider the complex value class Awards of CINEMA-SEM to be
dependent on the attribute award, then the relation Award could be omitted.

Suppose that I is an instance of CINEMA-SEM and that I′ is the simulation of I.
The semantics of CINEMA-SEM, along with the assumed keys, imply that I′ will satisfy
several dependencies. This includes the following fd’s (in fact, key dependencies):

Person : name→ citizenship
Movie : title→ director_name
Theater : theater_name→ address, phone
Pariscope : theater_name, time, title→ price

A number of ind’s are also implied:

Director[name] ⊆ Person[name]
Actor[name] ⊆ Person[name]

Movie[director_name] ⊆ Director[name]
Acts_in[name] ⊆ Actor[name]
Acts_in[title] ⊆ Movie[title]
Has_Award[name] ⊆ Actor[name]

11.1 Semantic Data Models 249

Has_Award[prize, year] ⊆ Award[prize, year]

Pariscope[theater_name] ⊆ Theater[theater_name]
Pariscope[title] ⊆ Movie[title]

The first group of ind’s follows from ISA relationships; the second from restrictions on
attribute ranges; and the third from restrictions on the components of complex values. All
but one of the ind’s here are unary, because all of the keys, except the key for Award, are
based on a single attribute.

Preservation of Data

Suppose that S is a GSM schema with keys for primary classes, and (R, � ∪ �) is a
relational schema that simulates it, constructed in the fashion illustrated in Example 11.1.2,
where � is the set of fd’s and � is the set of ind’s. As noted in criterion (1) at the beginning
of this chapter, it is desirable that there be a natural one-to-one mapping τ from instances
of S to instances of (R, � ∪ �). To formalize this, two obstacles need to be overcome.
First, we have not developed a query language for the GSM. (In fact, no query language
has become widely accepted for any of the semantic data models. In contrast, some query
languages for object-oriented database models are now gaining wide acceptance.) We shall
overcome this obstacle by developing a rather abstract notion of “natural” for this context.

The second obstacle stems from the fact that OID-equivalent GSM instances hold
essentially the same information. Thus we would expect OID-equivalent instances to map
to the same relational instance.1 To refine criterion (1) for this context, we are searching
for a one-to-one mapping from Inst(S)/≡OID into Inst(R, � ∪ �).

A mapping τ : Inst(S)→ Inst(R, � ∪�) is OID consistent if I≡OID I′ implies τ(I)=
τ(I′). In this case, we can view τ as a mapping with domain Inst(S)/≡OID. The mapping
τ preserves the active domain if for each I ∈ Inst(S), adom(τ (I))= adom(I). [The active
domain of a GSM instance I, denoted adom(I), is the set of all printables that occur in I.]

The following can be verified (see Exercise 11.3):

Theorem 11.1.3 (Informal) Let S be a GSM schema with keys for primary classes,
and let (R, � ∪ �) be a relational simulation of S. Then there is a function τ : Inst(S)→
Inst(R, � ∪ �) such that τ is OID consistent and preserves the active domain, and such
that τ : Inst(S)/≡OID → Inst(R, � ∪ �) is one-to-one and onto.

Properties of the Relational Schema

We now consider criteria (2) and (3) to highlight desirable properties of relational schemas
that simulate GSM schemas.

1 When artificial surrogates are used to represent OIDs in the relational database, one might have to
use a notion of an “equivalent” relational database instances as well.

250 Design and Dependencies

Criterion (2) for schema transformations concerns desirable properties of the target
schema. We now describe three such properties resulting from the transformation of GSM
schemas into relational ones.

Suppose again that S is a GSM schema with keys, and (R, � ∪ �) is a relational
simulation of it. We assume as before that no constraints hold for S, aside from those
implied by the constructs in S and the keys.

The three properties are as follows:

1. First, � is equivalent to a family of key dependencies; in the terminology of the
next section, this means that each of the relation schemas obtained is in Boyce-
Codd Normal Form (BCNF). Furthermore, the only mvd’s satisfied by relations in
R are implied by �, and so the relation schemas are in fourth normal form (4NF).

2. Second, the family � of ind’s is acyclic (see Chapter 9). That is, there is no
sequence R1[X1] ⊆ R2[Y1], R2[X2] ⊆ R3[Y2], . . . , Rn[Xn] ⊆ R1[Yn] of ind’s in
the set. By Theorem 9.4.5, this implies that logical implication can be decided
for (� ∪ �) and that finite and unrestricted implication coincide.

3. Finally, each ind R[X]⊆ S[Y] in � key based. That is, Y is a (minimal) key of S
under �.

Together these properties present a number of desirable features. In particular, depen-
dency implication is easy to check. Given a database schema R and sets � of fd’s and �

of ind’s over R, � and � are independent if (1) for each fd σ over R, (� ∪ �) |= σ im-
plies � |= σ , and (2) for each ind γ over R, (� ∪ �) |= γ implies � |= γ . Suppose that S
is a GSM schema and that (R, � ∪ �) is a relational simulation of S. It can be shown
that the three aforementioned properties imply that � and � are independent
(see Exercise 11.4).

To conclude this section, we consider criterion (3). This criterion concerns the preser-
vation of meta-data. We do not attempt to formalize this criterion for this context, but it
should be clear that there is a close correspondence between the dependencies in � ∪ �

and the constructs used in S. In other words, the semantics of the application as expressed
by S is also captured, in the relational representation, by the dependencies � ∪ �.

The preceding discussion assumes that no dependency holds for S, aside from those
implied by the keys and the constructs in S. However, in many cases constraints will be
incorporated into S that are not directly implied by the structure of S. For instance, recall
Example 11.1.2, and suppose that the fd Pariscope : theater_name, time→ price is true for
the underlying data. The relational simulation will have to include this dependency and, as
a result, the resulting relational schema may be missing some of the desirable features (e.g.,
the family of fd’s is not equivalent to a set of keys and the schema is no longer in BCNF).
This suggests that a semantic model might be used to obtain a coarse relational schema,
which might be refined further using the techniques for improving relational schemas
developed in the next section.

11.2 Normal Forms 251

11.2 Normal Forms

In this section, we consider schema design based on the refinement of relational schemas
and normal forms, which provide the basis for this approach. The articulation of these
normal forms is arguably the main contribution of relational database theory to the realm of
schema design. We begin the discussion by presenting two of the most prominent normal
forms and a design strategy based on “decomposition.” We then develop another normal
form that overcomes certain technical problems of the first two, and describe an associated
design strategy based on “synthesis.” We conclude with brief comments on the relationship
of ind’s with decomposition.

When all the dependencies in a relational schema (R, �) are considered to be tagged,
one can view the database schema as a set {(R1, �1), . . . , (Rn,�n)}, where each (Rj,�j)

is a relation schema and theRj ’s are distinct. In particular, an fd schema is a relation schema
(R,�) or database schema (R, �), where � is a set of tagged fd’s; this is extended in
the natural fashion to other classes of dependencies. Much of the work on refinement of
relational schemas has focused on fd schemas and (fd + mvd) schemas. This is what we
consider here. (The impact of the ind’s is briefly considered at the end of this section.)

A normal form restricts the set of dependencies that are allowed to hold in a relation
schema. The main purpose of the normal forms is to eliminate at least some of the redun-
dancies and update anomalies that might otherwise arise. Intuitively, schemas in normal
form are “good” schemas.

We introduce next two kinds of normal forms, namely BCNF and 4NF. (We will
consider a third one, 3NF, later.) We then consider techniques to transform a schema into
such desirable normal forms.

BCNF: Do Not Represent the Same Fact Twice

Recall the schema (Movies[T (itle), D(irector), A(actor)], {T →D}) from Section 8.1. As
discussed there, the Movies relation suffers from various anomalies, primarily because
there is only one Director associated with each Title but possibly several Actors. Suppose
that (R[U], �) is a relation schema, � |=X→ Y , Y �⊆X and � �|=X→ U . It is not hard
to see that anomalies analogous to those of Movies can arise in R. Boyce-Codd normal
form prohibits this kind of situation.

Definition 11.2.1 A relation schema (R[U], �) is in Boyce-Codd normal form (BCNF)
if � |=X→ U whenever � |=X→ Y for some Y �⊆X. An fd schema (R, �) is in BCNF
if each of its relation schemas is.

BCNF is most often discussed in cases where � involves only functional dependen-
cies. In such cases, if (R,�) is in BCNF, the anomalies of Section 8.1 do not arise. An
essential intuition underlying BCNF is, “Do not represent the same fact twice.”

The question now arises: What does one do with a relation schema (R,�) that is
not in BCNF? In many cases, it is possible to decompose this schema into subschemas
(R1, �1), . . . , (Rn,�n) without information loss. As a simple example, Movies can be
decomposed into

252 Design and Dependencies

{
(Movie_director[TD], {T → D}),
(Movie_actors[TA],∅)

}

A general framework for decomposition is presented shortly.

4NF: Do Not Store Unrelated Information in the Same Relation

Consider the relation schema (Studios[N(ame), D(irector), L(ocation)], {N →→D|L}). A
tuple 〈n, d, l〉 is in Studios if director d is employed by the studio with name n and if
this studio has an office in location l. Only trivial fd’s are satisfied by all instances of
this schema, and so it is in BCNF. However, update anomalies can still arise, essentially
because the D and L values are independent from each other. This gives rise to the following
generalization of BCNF2:

Definition 11.2.2 A relation schema (R[U], �) is in fourth normal form (4NF) if

(a) whenever � |=X→ Y and Y �⊆X, then � |=X→ U

(b) whenever � |=X→→ Y and Y �⊆X, then � |=X→ U .

An (fd + mvd) schema (R, �) is in 4NF if each of its relation schemas is.

It is clear that if a relation schema is in 4NF, then it is in BCNF. It is easily seen that
Studios can be decomposed into two 4NF relations, without loss of information and that the
resulting relation schemas do not have the update anomalies mentioned earlier. An essential
intuition underlying 4NF is, “Do not store unrelated information in the same relation.”

The General Framework of Decomposition

One approach to refining relational schemas is decomposition. In this approach, it is usually
assumed that the original schema consists of a single wide relation containing all attributes
of interest. This is referred to as the pure universal relation assumption, or pure URA. A
relaxation of the pure URA, called the “weak URA,” is considered briefly in Section 11.3.

The pure URA is a simplifying assumption, because in practice the original schema is
likely to consist of several tables, each with its own dependencies. In that case, the design
process described for the pure URA is applied separately to each table. We adopt the pure
URA here. In this context, the schema transformation produced by the design process con-
sists of decomposing the original table into smaller tables by using the projection operator.
(In an alternative approach, selection is used to yield so-called horizontal decompositions.)

We now establish the basic framework of decompositions. Let (U [Z], �) be a relation
schema. A decomposition of (U [Z], �) is a database schema R = {R1[X1], . . . , Rn[Xn]}
with dependencies �, where ∪{Xj | j ∈ [1, n]} = Z. (The relation name ‘U ’ is used to
suggest that it is a “universal” relation.) In the sequel, we often use relation names U (Ri)
and attribute sets Z (Xi), interchangeably if ambiguity does not arise.

2 The motivation behind the names of several of the normal forms is largely historical; see the
Bibliographic Notes.

11.2 Normal Forms 253

We now consider the three criteria for schema transformation in the context of decom-
position. As already suggested, criterion (2) is evaluated in terms of the normal forms. With
regard to the preservation of data (1), the “natural” mapping from R to R is obtained by
projection: The decomposition mapping of R is the function πR : Inst(U)→ Inst(R) such
that for I ∈ inst(U), we have πR(I)(Rj) = πRj

(I). Criterion (1) says that the decompo-
sition should not lose information when I is replaced by its projections (i.e., it should be
one-to-one).

A natural property implying that a decomposition is one-to-one is that the original
instance can be obtained by joining the component relations. Formally, a decomposition
is said to have the lossless join property if for each instance I of (U,�) the join of the
projections is the original instance, i.e., �� (πR(I))= I. It is easy to test if a decomposition
R = {R1, . . . , Rn} of (U,�) has the lossless join property. Consider the query q(I) =
πR1(I) �� · · · �� πRn(I). The lossless join property means that q(I)= I for every instance
I over (U,�). But q(I)= I simply says that I satisfies the jd �� [R]. Thus we have the
following:

Theorem 11.2.3 Let (U,�) be a (full dependencies) schema and R a decomposition for
(U,�). Then R has the lossless join property iff � |=�� [R].

The preceding implication can be tested using the chase (see Chapter 8), as illustrated
next.

Example 11.2.4 Recall the schema (Movies[TDA], {T → D}). As suggested earlier,
a decomposition into BCNF is R = {TD,TA}. This decomposition has the lossless join
property. The tableau associated with the jd σ =�� [TD,TA] is as follows:

Tσ T D A

t d a1

t d1 a

tσ t d a

Consider the chase of 〈Tσ , tσ 〉 with {T →D}. Because the two first tuples agree on the T
column, d and d1 are merged because of the fd. Thus 〈t, d, a〉 ∈ chase(Tσ , tσ , {T →D}).
Hence T → D implies the jd σ , so R has the lossless join property. (See also Exer-
cise 11.9.)

Referring to the preceding example, note that it is possible to represent information in
R that cannot be directly represented in Movies. Specifically, in the decomposed schema we
can represent a movie with a director but no actors and a movie with an actor but no director.
This indicates, intuitively, that a decomposed schema may have more information capacity

254 Design and Dependencies

than the original (see Exercise 11.23). In practice, this additional capacity is exploited; in
fact, it provides part of the solution of so-called deletion anomalies.

Remark 11.2.5 In the preceding example, we used the natural join operator to recon-
struct decompositions. Interestingly, there are cases in which the natural join does not
suffice. To show that a decomposition is one-to-one, it suffices to exhibit an inverse to
the projection, called a reconstruction mapping. If � is permitted to include very general
constraints expressed in first-order logic that may not be dependencies per se, then there
are one-to-one decompositions whose reconstruction mappings are not the natural join (see
Exercise 11.20).

We now consider criterion (3), the preservation of meta-data. In the context of decom-
position, this is formalized in terms of “dependency preservation”: Given schema (U,�),
which is replaced by a decomposition R = {R1, . . . , Rn}, we would like to find for each j

a family �j of dependencies over Rj such that ∪j�j is equivalent to the original �. In the
case where � is a set of fd’s, we can make this much more precise. For V ⊆ U , let

πV (�)= {X→ A |XA⊆ V and � |=X→ A},

let �j = πXj
(�), and let � = ∪j�j . Obviously, � |= �. (See Proposition 10.2.4.) Intu-

itively, � consists of the dependencies in �∗ that are local to the relations in the decom-
position R. The decomposition R is said to be dependency preserving iff � ≡�. In other
words, � can be enforced by the dependencies local in the decomposition. It is easy to see
that the decomposition of Example 11.2.4 is dependency preserving.

Given an fd schema (U,�) and V ⊆ U , πV (�) has size exponential in V , simply
because of trivial fd’s. But perhaps there is a smaller set of fd’s that is equivalent to
πV (�). A cover of a set � of fd’s is a set �′ of fd’s such that �′ ≡ �. Unfortunately, in
some cases the smallest cover for a projection πV (�) is exponential in the size of � (see
Exercise 11.11).

What about projections of sets of mvd’s? Suppose that � is a set of fd’s and mvd’s
over U . Let V ⊆ U and

πmvd
V (�)= {[X→→ (Y ∩ V)|(Z ∩ V)] | [X→→ Y |Z] ∈�∗ and X ⊆ V }.

Consider a decomposition R of (U,�). Viewed as constraints on U , the sets πmvd
Rj

(�) are
now embedded mvd’s. As we saw in Chapter 10, testing implication for embedded mvd’s
is undecidable. However, the issue of testing for dependency preservation in the context of
decompositions involving fd’s and mvd’s is rather specialized and remains open.

Fd’s and Decomposition into BCNF

We now present a simple algorithm for decomposing an fd schema (U,�) into BCNF
relations. The decomposition produced by the algorithm has the lossless join property but
is not guaranteed to be dependency preserving.

We begin with a simple example.

11.2 Normal Forms 255

Example 11.2.6 Consider the schema (U,�), where U has attributes

TITLE D_NAME TIME PRICE
TH_NAME ADDRESS PHONE

and � contains

FD1 : TH_NAME → ADDRESS,PHONE

FD2 : TH_NAME,TIME,TITLE → PRICE

FD3 : TITLE → D_NAME

Intuitively, schema (U,�) represents a fragment of the real-world situation represented by
the semantic schema CINEMA-SEM.

A first step toward transforming this into a BCNF schema is to decompose using FD1,
to obtain the database schema{

({TH_NAME,ADDRESS,PHONE}, {FD1}),
({TH_NAME,TITLE,TIME,PRICE,D_NAME}, {FD2,FD3})

}

Next FD3 can be used to split the second relation, obtaining

({TH_NAME,ADDRESS,PHONE}, {FD1})
({TITLE,D_NAME}, {FD3})
({TH_NAME,TITLE,TIME,PRICE}, {FD2})

which is in BCNF. It is easy to see that this decomposition has the lossless join property
and is dependency preserving. In fact, in this case, we obtain the same relational schema
as would result from starting with a semantic schema.

We now present the following:

Algorithm 11.2.7 (BCNF Decomposition)

Input: A relation schema (U,�), where � is a set of fd’s.

Output: A database schema (R, �) in BCNF

1. Set (R, �) := {(U,�)}.

2. Repeat until (R, �) is in BCNF:
(a) Choose a relation schema (S[V], L) ∈ R that is not in BCNF.
(b) Choose nonempty, disjoint X, Y,Z ⊂ V such that

(i) XYZ = V ;
(ii) L |=X→ Y ; and

(iii) L �|=X→ A for each A ∈ Z.
(c) Replace (S[V], L) in R by (S1[XY], πXY (L)) and (S2[XZ], πXZ(L)).
(d) If there are (S[V], L), (S′[V ′], L′) in R with V ⊆ V ′, then remove

S([V], L) from R.

256 Design and Dependencies

It is easily seen that the preceding algorithm terminates [each iteration of the loop elim-
inates at least one violation of BCNF among finitely many possible ones]. The following
is easily verified (see Exercise 11.10):

Theorem 11.2.8 The BCNF Decomposition Algorithm yields a BCNF schema and a
decomposition that has the lossless join property.

What is the complexity of running the BCNF Decomposition Algorithm? The main
expenses are (1) examining subschemas (S[V], L) to see if they are in BCNF and, if not,
finding a way to decompose them; and (2) computing the projections of L. (1) is polyno-
mial, but (2) is inherently exponential (see Exercise 11.11). This suggests a modification
to the algorithm, in which only the relational schemas S[V] are computed at each stage,
but L= πV (�) is not. However, the problem of determining, given fd schema (U,�) and
V ⊆ U , whether (V , πV (�)) is in BCNF is co-np-complete (see Exercise 11.12). Interest-
ingly, a polynomial time algorithm does exist for finding some BCNF decomposition of an
input schema (U,�) (see Exercise 11.13).

When applying BCNF decomposition to the schema of Example 11.2.6, the same
result is achieved regardless of the order in which the dependencies are applied. This is
not always the case, as illustrated next.

Example 11.2.9 Consider (ABC, {A→ B,B→ C}). This has two BCNF decompo-
sitions

R1 = {(AB, {A→ B}), (BC, {B→ C})}
R2 = {(AB, {A→ B}), (AC,∅)}.

Note that R1 is dependency preserving, but R2 is not.

Fd’s, Dependency Preservation, and 3NF

It is easy to check that the schemas in Examples 11.2.4, 11.2.6, and 11.2.9 have depen-
dency-preserving decompositions into BCNF. However, this is not always achievable, as
shown by the following example.

Example 11.2.10 Consider a schema Lectures[C(ourse), P(rofessor), H(our)], where
tuple 〈c, p, h〉 indicates that course c is taught by professor p at hour h. We assume that
Hour ranges over weekday-time pairs (e.g., Tuesday at 4PM) and that a given course may
have lectures during several hours each week. Assume that the following two dependencies
are to hold:

� =
{

C→ P

PH → C

}
.

In other words, each course is taught by only one professor, and a professor can teach only
one course at a given hour.

11.2 Normal Forms 257

The schema (Lectures, �) is not in BCNF because � |= C→ P , but � �|= C→ H .
Applying the BCNF Decomposition Algorithm yields R = {(CP, {C→ P }), (CH,∅)}.

It is easily seen that {CP : C→ P } �|=�, and so this decomposition does not preserve
dependencies. A simple case analysis shows that there is no BCNF decomposition of
Lectures that preserves dependencies.

This raises the question: Is there a less restrictive normal form for fd’s so that a lossless
join decomposition that preserves dependencies can always be found? The affirmative
answer is based on “third normal form” (3NF). To define it, we need some auxiliary
notions. Suppose that (R[U], �) is an fd schema. A superkey of R is a set X ⊆ U such
that � |=X→ U . A key of R is a minimal superkey. A key attribute is an attribute A ∈ U

that is in some key of R. We now have the following:

Definition 11.2.11 An fd schema (U,�) is in third normal form (3NF) if whenever
X→ A is a nontrivial fd implied by �, then either X is a superkey or A is a key attribute.
An fd schema (R, �) is in 3NF if each of its components is.

Example 11.2.12 Recall the schema (Lectures,{C→ P,PH → C}) described in Exam-
ple 11.2.10. Here PH is a key, so P is a key attribute. Thus the schema is in 3NF.

A 3NF Decomposition Algorithm can be defined in analogy to the BCNF Decompo-
sition Algorithm. We present an alternative approach, generally referred to as “synthesis.”

Given a set � of fd’s, a minimal cover of � is a set �′ of fd’s such that

(a) each dependency in �′ has the form X→ A, where A is an attribute;

(b) �′ ≡�;

(c) no proper subset of �′ implies �; and

(d) for each dependency X→ A in �′, there is no Y ⊂X such that � |= Y → A.

A minimal cover can be viewed as a reduced representative for a set of fd’s. It is straight-
forward to develop a polynomial time algorithm for producing a minimal cover of a set of
fd’s (see Exercise 11.16).

We now have the following:

Algorithm 11.2.13 (3NF Synthesis)

Input: A relation schema (U,�), where � is a set of fd’s that is a minimal cover. We
assume that each attribute of U occurs in at least one fd of �.

Output: An fd schema (R, �) in 3NF

1. If there is an fd X→ A in �, where XA= U , then output (U,�).

2. Otherwise
(a) for each fd X→ A in �, include the relational schema (XA, {X→ A})

in the output schema (R, �); and

258 Design and Dependencies

(b) choose a key X of U under �, and include (X,∅) in the output.

A central aspect of this algorithm is to form a relation XA for each fd X→ A in �.
Intuitively, then, the output relations result from combining or “synthesizing” attributes
rather than decomposing the full attribute set.

The following is easily verified (see Exercise 11.17):

Theorem 11.2.14 The 3NF Synthesis Algorithm decomposes a relation schema into a
database schema in 3NF that has the lossless join property and preserves dependencies.

Several improvements to the basic 3NF Synthesis Algorithm can be made easily. For
example, different schemas obtained in step (2.a) can be merged if they come from fd’s with
the same left-hand side. Step (2.b) is not needed if step (2.a) already produced a schema
whose set of attributes is a superkey for (U,�). In many practical situations, it may be
appropriate to omit step (2.b) of the algorithm. In that case, the decomposition preserves
dependencies but does not necessarily satisfy the lossless join property.

In the preceding algorithm, it was assumed that each attribute of U occurs in at
least one fd of �. Obviously, this may not always be the case, for example, the attribute
A_NAME in Example 11.2.15b does not participate in fd’s. One approach to remedy this
situation is to introduce symbolic fd’s. For instance, in that example one might include
the fd TITLE, A_NAME → ω1, where ω1 is a new attribute. One relation produced by the
algorithm will be {TITLE,A_NAME, ω1}. As a last step, attributes such as ω1 are removed.

In Example 11.2.9 we saw that the output of a BCNF decomposition may depend on
the order in which fd’s are applied. In the case of the preceding algorithm for 3NF, the
minimal cover chosen greatly impacts the final result.

Mvd’s and Decomposition into 4NF

A fundamental problem with BCNF decomposition and 3NF synthesis as just presented is
that they do not take into account the impact of mvd’s.

Example 11.2.15 (a) The schema (Studios[N(ame), D(irector), L(ocation)], {N →→
D|L}) is in BCNF and 3NF but has update anomalies. The mvd suggests a decomposition
into ({Name,Director}, {Name,Location}).

(b) A related issue is that BCNF decompositions may not separate attributes that
intuitively should be separated. For example, consider again the schema of Example 11.2.6,
but suppose that the attribute A_NAME is included to denote actor names. Following the
same decomposition steps as before, we obtain the schema

({TH_NAME,ADDRESS,PHONE}, {FD1}),
({TITLE,D_NAME}, {FD3}),
({TH_NAME,TITLE,TIME,PRICE,A_NAME}, {FD2})

11.2 Normal Forms 259

which can be further decomposed to

({TH_NAME,ADDRESS,PHONE}, {FD1}),
({TITLE,D_NAME}, {FD3}),
({TH_NAME,TITLE,TIME,PRICE}, {FD2}),
({TH_NAME,TITLE,TIME,A_NAME},∅)

Although there is a connection in the underlying data between TITLE and A_NAME,
the last relation here is unnatural. If we assume that the mvd TITLE →→ A_NAME is
incorporated into the original schema, we can further decompose the last relation and apply
a step analogous to (2d) of the BCNF Decomposition Algorithm to obtain

({TH_NAME,ADDRESS,PHONE}, {FD1}),
({TITLE,D_NAME}, {FD3}),
({TH_NAME,TITLE,TIME,PRICE}, {FD2}),
({TITLE,A_NAME},∅)

Fourth normal form (4NF) was originally developed to address these kinds of situa-
tions. As suggested by the preceding example, an algorithm yielding 4NF decompositions
can be developed along the lines of the BCNF Decomposition Algorithm. As with BCNF,
the output of 4NF decomposition is a lossless join decomposition that is not necessarily
dependency preserving.

A Note on Ind’s

In relational schema design starting with a semantic data model, numerous ind’s are typ-
ically generated. In contrast, the decomposition and synthesis approaches for refining re-
lational schemas as presented earlier do not take ind’s into account. It is possible to in-
corporate ind’s into these approaches, but the specific choice of ind’s is dependent on the
intended semantics of the target schema.

Example 11.2.16 Recall the schema (Movies[TDA], {T →D}) and decomposition into
(R1[TD], {T →D}) and (R2[TA],∅).

(a) If all movies must have a director and at least one actor, then bothR1[T]⊆ R2[T]
and R2[T]⊆ R1[T] should be included. In this case, the mapping from Movies
to its decomposed representation is one-to-one and onto.

(b) If the fd T →D is understood to mean that there is a total function from movies
to directors, but movies without actors are permitted, then the ind R2[T] ⊆
R1[T] should be included.

260 Design and Dependencies

(c) Finally, suppose the fd T →D is understood to mean that each movie has at
most one director (i.e., it is a partial function), and suppose that a movie can
have no actor. Then an additional relation R3[T] should be added to hold the
titles of all movies, along with ind’s R1[T]⊆ R3[T] and R2[T]⊆ R3[T].

More generally, what if one is to refine a relational schema (R, � ∪ �), where � is
a set of tagged fd’s and mvd’s and � is a set of ind’s? It may occur that there is an ind
Ri[X] ⊆ Rj [Y], and either X or Y is to be “split” as the result of a decomposition step.
The desired semantics of the target schema can be used to select between a variety of
heuristic approaches to preserving the semantics of this ind. If � consists of unary ind’s,
such splitting cannot occur. Speaking intuitively, if the ind’s of � are key based, then the
chances of such splitting are reduced.

11.3 Universal Relation Assumption

In the preceding section, we saw that the decomposition and synthesis approaches to
relational schema design assume the pure URA. This section begins by articulating some
of the implications that underly the pure URA. It then presents the “weak URA,” which
provides an intuitively natural mechanism for viewing a relational database instance I as if
it were a universal relation.

Underlying Assumptions

Suppose that an fd schema (U [Z], �) is given and that decomposition or synthesis will
be applied. One of several different database schemas might be produced, but presumably
all of them carry roughly the same semantics. This suggests that the attributes in Z can
be grouped into relation schemas in several different ways, without substantially affecting
their underlying semantics. Intuitively, then, it is the attributes themselves (along with the
dependencies in �), rather than the attributes as they occur in different relation schemas,
that carry the bulk of the semantics in the schema. The notion that the attributes can
represent a substantial portion of the semantics of an application is central to schema design
based on the pure URA.

When decomposition and synthesis were first introduced, the underlying implications
of this notion were not well understood. Several intuitive assumptions were articulated
that attempted to capture these implications. We describe here two of the most important
assumptions. Any approach to relational schema design based on the pure URA should also
abide by these two assumptions.

Universal Relation Scheme Assumption: This states that if an attribute name appears in two
or more places in a database schema, then it refers to the same entity set in each place.
For example, an attribute name Number should not be used for both serial numbers and
employee numbers; rather two distinct attribute names Serial# and Employee# should
be used.

Unique Role Assumption: This states that for each set of attributes there is a unique rela-

11.3 Universal Relation Assumption 261

tionship between them. This is sometimes weakened to say that there may be several
relationships, but one is deemed primary. This is illustrated in the following example.

Example 11.3.1 (a) Recall in Example 11.2.15(b) that D_NAME and A_NAME were
used for director and actor names, respectively. This is because there were two possible
relationships between movies and persons.

(b) For a more complicated example, consider a schema for bank branches that in-
cludes attributes for B(ranch), L(oan), (checking) A(ccount), and C(ustomer). Suppose
there are four relations

BL, which holds data about branches and loans they have given

BA, which holds data about branches and checking accounts they provide

CL, which holds data about customers and loans they have

CA, which holds data about customers and checking accounts they have.

This design does not satisfy the unique role assumption, mainly because of the cycle in the
schema. For example, consider the relationship between branches and customers. In fact,
there are two relationships—via loans and via accounts. Thus a request for “the” data in the
relationship between banks and customers is somewhat ambiguous, because it could mean
tuples stemming from either of the two relationships or from the intersection or union of
both of them.

One solution to this ambiguity is to “break” the cycle. For example, we could replace
the Customer attribute by the two attributes L-C(ustomer) and A-C(ustomer). Now the user
can specify the desired relationship by using the appropriate attribute.

The Weak Universal Relation Assumption

Suppose that schema (U,�) has decomposition (R, �) (with R = {R1, . . . , Rn}). When
studying decomposition, we focused primarily on instances I of (R, �) that were the image
of some instance I of (U,�) under the decomposition mapping πR. In particular, such
instances I are globally consistent. [Recall from Chapter 6 that instance I is globally
consistent if for each j ∈ [1, n], πRj

(�� I) = I(Rj); i.e., no tuple of I(Rj) is dangling
relative to the full join.] However, in many practical situations it might be useful to use
the decomposed schema R to store instances I that are not globally consistent.

Example 11.3.2 Recall the schema (Movies[TDA], {T →D}) from Example 11.2.4 and
its decomposition {TD,TA}. Suppose that for some movie the director is known, but no
actors are known. As mentioned previously, this information is easily stored in the decom-
posed database, but not in the original. The impossibility of representing this information
in the original schema was one of the anomalies that motivated the decomposition in the
first place.

Suppose that fd schema (U,�) has decomposition (R, �)= {(R1, �1), . . . , (Rn, �n)}.
Suppose also that I is an instance of R such that (1) I(Rj) |= �j for each j , but (2) I is

262 Design and Dependencies

AB A B AB A B AB A B

a b a b a b

a′ b

BC B C BC B C BC B C

b c b c b c

ACD A C D ACD A C D ACD A C D

a c d a c d a c d

a′ c d ′ a′ c d ′

I1 I2 I3

Figure 11.4: Instances illustrating weak URA

not necessarily globally consistent. Should I be considered a “valid” instance of schema
(R, �)? More generally, given a schema (U,�), a decomposition R of U , and a (not
necessarily globally consistent) instance I over R, how should we define the notion of
“satisfaction” of � by I?

The weak universal relation assumption (weak URA) provides one approach for an-
swering this question. Under the weak URA, we say that I satisfies � if there is some
instance J ∈ sat (U,�) such that I(Rj) ⊆ πRj

(J) for each j ∈ [1, n]. In this case, J is
called a weak instance for I.

Example 11.3.3 Let U = {ABCD}, � = {A→ B,BC →D}, and R = {AB,BC,ACD}.
Consider the three instances of R shown in Fig. 11.4. The instance I1 satisfies � under the
weak URA, because J1 = {〈a, b, c, d〉} is a weak instance.

On the other hand, I2, which contains I1, does not satisfy � under the weak URA. To
see this, suppose that J2 is a weak instance for I2. Then J2 must contain the following (not
necessarily distinct) tuples:

t1 = 〈a, b, c1, d1〉
t2 = 〈a′, b, c2, d2〉
t3 = 〈a3, b, c, d3〉
t4 = 〈a, b4, c, d〉
t5 = 〈a′, b5, c, d

′〉

where the subscripted constants may be new. Because J2 |= A→ B, by considering the

11.3 Universal Relation Assumption 263

pairs 〈t1, t4〉 and 〈t2, t5〉, we see that b4 = b5 = b. Next, because J2 |= BC→D, and by
considering the pair 〈t4, t5〉, we have that d = d ′, a contradiction.

Finally, I3 does satisfy � under the weak URA.

As suggested by the preceding example, testing whether an instance I over R is a
weak instance of (U,�) for a set of fd’s � can be performed using the chase. To do that, it
suffices to construct a table over U by padding the tuples from each Rj with distinct new
variables. The resulting table is chased with the dependencies in �. If the chase fails, there
is no weak instance for I. On the other hand, a successful chase provides a weak instance
for I by simply replacing each remaining variable with a distinct new constant.

This yields the following (see Exercise 11.27):

Theorem 11.3.4 Let � be a set of fd’s over U and R a decomposition of U . Testing
whether I over R satisfies � under the weak URA can be performed in polynomial time.

Of course, the chasing technique can be extended to arbitrary egd’s, although the
complexity jumps to exptime-complete.

What about full tgd’s? Recall that full tgd’s can always be satisfied by adding new
tuples to an instance. Let � be a set of full dependencies. It is easy to see that I satisfies �
under the weak URA iff I satisfies �∗ ∩ {σ | σ is an egd} under the weak URA.

Querying under the Weak URA

Let (U,�) be a schema, where� is a set of full dependencies, and let R be a decomposition
ofU . Let us assume the weak URA, and suppose that database instance I over R satisfies�.
How should queries against I be answered? One approach is to consider the query against
all weak instances for I and then take the intersection of the answers. That is,

qweak(I)= ∩{q(I) | I is a weak instance of I}.

We develop now a constructive method for computing qweak.
Given instance I of R, the representative instance of I is defined as follows: For each

component Ij of I, let I ′j be the result of extending Ij to be a free instance over U by
padding tuples with distinct variables. Set I ′ = ∪{I ′j | j ∈ [1, n]}. Now apply the chase
using � to obtain the representative instance rep(I, �) (or the empty instance, if two
distinct constants are to be identified). Note that some elements of rep(I, �) may have
variables occurring in them.

For X ⊆ U , let π↓X(rep(I, �)) denote the set of tuples (i.e., with no variables present)
in πX(rep(I, �)). The following can now be verified (see Exercise 11.28).

Proposition 11.3.5 Let (U,�), R and I be as above, and let X ⊆ U . Then

(a) [πX]weak(I)= π↓X(rep(I, �)).

(b) If � is a set of fd’s, then [πX]weak(I) can be computed in ptime.

264 Design and Dependencies

This proposition provides the basis of a constructive method for evaluating an arbitrary
algebra query q under the weak URA. Furthermore, if � is a set of fd’s, then evaluating q

will take time at most polynomial in the size of the input instance. This approach can be
generalized to the case where � is a set of full dependencies but computing the projection
is exptime-complete.

Bibliographic Notes

The recent book [MR92] provides an in-depth coverage of relational schema design, in-
cluding both the theoretical underpinnings and other, less formal factors that go into good
design. Extensive treatments of the topic are also found in [Dat86, Fv89, Ull88, Vos91].
References [Ken78, Ken79, Ken89] illustrate the many difficulties that arise in schema de-
sign, primarily with a host of intriguing examples that show how skilled the human mind
is at organizing diverse information and how woefully limiting data models are.

Surveys of semantic data models include [Bor85, HK87, PM88], and the book [TL82];
[Vos91] includes a chapter on this topic. Prominent early semantic data models include the
Entity-Relationship (ER) model [Che76] (see also [BLN86, MR92, TYF86]), the Func-
tional Data Model [Shi81, HK81], the Semantic Data Model [HM81], and the Semantic
Binary Data Model [Abr74]. An early attempt to incorporate semantic data modeling con-
structs into the relational model is RM/T [Cod79]; more recently there have been various
extensions of the relational model to incorporate object-oriented data modeling features
(e.g., [SJGP90]). Many commercial systems support “tuple IDs,” which can be viewed
as a form of OID. Galileo [ACO85], Taxis [MBW80], and FQL [BFN82] are program-
ming languages that support constructs stemming from semantic data models. The IFO
[AH87] model is a relatively simple, formal semantic data model that subsumes the struc-
tural components of the aforementioned semantic models and several others. Reference
[AH87] clarifies issues concerning ISA hierarchies in semantic schemas (see also [BLN86,
Cod79, DH84] and studies the propagation of updates.

Reference [Che76] describes a translation of the ER model into the relational model, so
that the resulting schema is in BCNF. From a practical perspective, this has become widely
accepted as the method of choice for designing relational schemas; [TYF86] provides
a subsequent perspective on this approach. There has also been considerable work on
understanding the properties of relational schemas resulting from ER schemas and mapping
relational schemas into ER ones. Reference [MR92] provides an in-depth discussion of this
area.

Reference [LV87] presents a translation from a semantic to the relational model
and studies the constraints implied for the relational schema, including cardinality con-
straints. The logical implication of constraints within a semantic model schema is studied
in [CL94]. References [Lie80, Lie82] study the relationship of schemas from the network
and relational models.

At a fundamental level, an important aspect of schema design is to replace one schema
with another that can hold essentially the same information. This raises the issue of de-
veloping formal methods for comparing the relative information capacity of different
schemas. Early work in this direction for the relational model includes [AABM82] and
[BMSU81] (see Exercise 11.22). More abstract work is found in [HY84, Hul86] (see Ex-
ercises 11.23 and 11.24), which forms the basis for Theorem 11.1.3. Reference [MS92]

Bibliographic Notes 265

provides justification for translations from the Entity-Relationship model into the relational
model using notions of relative information capacity. Formal notions of relative informa-
tion capacity have also been applied in the context of schema integration and translation
[MIR93] and heterogeneous databases [MIR94]. A very abstract framework for comparing
schemas from different data models is proposed in [AT93].

The area of normal forms and relational database design was studied intensively in the
1970s and early 1980s. Much more complete coverage of this topic than presented here may
be found in [Dat86, Mai83, Ull88, Vos91]. We mention some of the most important papers
in this area. First normal form [Cod70] is actually fundamental to the relational model: A
relation is in first normal form (1NF) if each column contains atomic values. In Chapter 20
this restriction shall be relaxed to permit relations some of whose columns themselves
hold relations (which again may not be in first normal form). References [Cod71, Cod72a]
raised the issue of update anomalies and initiated the search for normal forms that prevent
them by introducing second and third normal forms. The definition of 3NF used here is
from [Zan82]. (Second normal form is less restrictive than third normal form.) Boyce-
Codd normal form (BCNF) was introduced in [Cod74] to provide a normal form simpler
than 3NF. Another improvement of 3NF is proposed in [LTK81]. Fourth normal form
was introduced in [Fag77b]; Example 11.2.15 is inspired from that reference. Even richer
normal forms include project-join normal form (PJ/NF) [Fag79] and domain-key normal
form [Fag81].

In addition to introducing second and third normal form, [Cod72a] initiated the
search for normalization algorithms by proposing the first decomposition algorithms. This
spawned other research on decomposition [DC72, RD75, PJ81] and synthesis [BST75,
Ber76b, WW75]. The fact that these two criteria are not equivalent was stressed in [Ris77],
where it is proposed that both be attempted. Early surveys on these approaches to rela-
tional design include [BBG78, Fag77a, Ris78]. Algorithms for synthesis into 3NF include
[Ber76b, BDB79], for decomposition into BCNF include [TF82], and for decomposition
into 4NF include [Fag77b]. Computational issues raised by decompositions are studied in
[LO78, BB79, FJT83, TF82] and elsewhere. Reference [Got87] presents a good heuristic
for finding covers of the projection of a set of fd’s. The 3NF Synthesis Algorithm presented
in this chapter begins with a minimal cover of a set of fd’s; [Mai80] shows that minimal
covers can be found in polynomial time.

The more formal study of decompositions and their properties was initiated in [Ris77],
which considered decompositions into two-element sets and proposed the notion of inde-
pendent components; and [AC78], which studied decompositions with lossless joins and
dependency preservation. This was extended independently to arbitrary decompositions
over fd’s by [BR80] and [MMSU80]. Lossless join was further investigated in [Var82b]
(see Exercise 11.20).

The notion that not all integrity constraints specified in a schema should be considered
for the design process was implicit in various works on semantic data modeling (e.g.,
[Che76, Lie80, Lie82]). It was stated explicitly in connection with relational schema design
in [FMU82, Sci81]. An extensive application of this approach to develop an approach to
schema design that incorporates both fd’s and mvd’s is [BK86].

A very different form of decomposition, called horizontal decomposition, is intro-
duced in [DP84]. This involves splitting a relation into pieces, each of which satisfies a
given set of fd’s.

266 Design and Dependencies

The universal relation assumption has a long history; the reader is directed to [AA93,
MUV84, Ull89b] for a much more complete coverage of this topic than found in this chap-
ter. The URA was implicit in much of the early work on normal forms and decompositions;
this was articulated more formally in [FMU82, MUV84]. The weak URA was studied in
connection with query processing in [Sag81, Sag83], and in connection with fd satisfac-
tion in [Hon82]. Proposition 11.3.5(a) is due to [MUV84] and part (b) is due to [Hon82];
the extension to full dependencies is due to [GMV86]. Reference [Sci86] presents an in-
teresting comparison of the relational model with inclusion dependencies to a variant of
the universal relation model and shows an equivalence when certain natural restrictions are
imposed.

A topic related to the URA is that of universal relation interfaces (URI); these attempt
to present a user view of a relational database in the form of a universal relation. An
excellent survey of research on this topic is found in [MRW86]; see also [AA93, Osb79,
Ull89b].

Exercises

Exercise 11.1

(a) Extend the instance of Example 11.1.1 for CINEMA-SEM so that it has at least two
objects in each class.

(b) Let CINEMA-SEM′ be the same as CINEMA-SEM, except that a complex value
class Movie_Actor is used in CINEMA-SEM in place of the attributes acted_in and
has_actors. How would the instance you constructed for part (a) be represented in
CINEMA-SEM′?

Exercise 11.2

(a) Suppose that in CINEMA-SEM some theaters do not have phones. Describe how the
simulation CINEMA-REL can be changed to reflect this (without using null values).
What dependencies are satisfied?

(b) Do the same for the case where some persons may have more than one citizenship.

Exercise 11.3

(a) Describe a general algorithm for translating GSM schemas with keys into relational
ones.

(b) Verify Theorem 11.1.3.

(c) Verify that the relational schema resulting from a GSM schema is in 4NF and has
acyclic and key-based ind’s.

♠Exercise 11.4 [MR88, MR92] Let R be a relational database schema, � a set of tagged fd’s
for R, and � a set of ind’s for R. Assume that (R, �) is in BCNF and that � is acyclic and
consists of key-based ind’s (as will arise if R is the simulation of a GSM schema). Prove that �
and � are independent. Hint: Show that if I is an instance of R satisfying �, then no fd can be
applied during chasing of I by (� ∪ �). Now apply Theorem 9.4.5.

Exercise 11.5 [Fag79] Let (R,�) be a relation schema, and let �′ be the set of key depen-
dencies implied by �. Show that R is in 4NF iff each nontrivial mvd implied by � is implied
by �′.

Exercises 267

Exercise 11.6 [DF92] A key dependency X→ U is simple if X is a singleton.

(a) Suppose that (R,�) is in BCNF, where � may involve both fd’s and mvd’s. Suppose
further that (R,�) has at least one simple key. Prove that (R,�) is in 4NF.

(b) Suppose that (R,�) is in 3NF and that each key of � is simple. Prove that (R,�) is
in BCNF.

A schema (R,�) is in project-join normal form (PJ/NF) if each JD σ implied by � is implied
by the key dependencies implied by �.

(a) Show that if (R,�) is in 3NF and each key of � is simple, then (R,�) is in PJ/NF.

Exercise 11.7 Let (U,�) be a schema, where � contains possibly fd’s, mvd’s, and jd’s. Show
that (a) (U,�) is in BCNF implies (U,�) is in 3NF; (b) (U,�) is in 4NF implies (U,�) is in
BCNF; (c) (U,�) is in PJ/NF implies (U,�) is in 4NF.

Exercise 11.8 [BR80, MMSU80] Prove Theorem 11.2.3.

Exercise 11.9 Recall the schema (Movies[TDA],{T →D}). Consider the decomposition R1 =
{(TD, {T →D}), (DA,∅)}.

(a) Show that this does not have the lossless join property.

0 (b) Show that this decomposition is not one-to-one. That is, exhibit two distinct instances
I, I ′ of (Movies, {T →D}) such that πR1(I)= πR1(I

′).

Exercise 11.10 Verify Theorem 11.2.8. Hint: To prove the lossless join property, use repeated
applications of Proposition 8.2.2.

Exercise 11.11 [FJT83] For each n≥ 0, describe an fd schema (U,�) and V ⊆ U , such that
� has ≤ 2n+ 1 dependencies but the smallest cover for πV (�) has at least 2n elements.

Exercise 11.12

(a) Let (U [Z], �) be an fd schema. Give a polynomial time algorithm for determining
whether this relation schema is in BCNF. (In fact, there is a linear time algorithm.)

(b) [BB79] Show that the following problem is co-np-complete. Given fd schema
(R[U], �) and V ⊆ U , determine whether (V , πV (�)) is in BCNF. Hint: Reduce
to the hitting set problem [GJ79].

0Exercise 11.13 [TF82] Develop a polynomial time algorithm for finding BCNF decompo-
sitions. Hint: First show that each two-attribute fd schema is in BCNF. Then show that if
(S[V], L) is not in BCNF, then there are A,B ∈ V such that (V − AB)→ A.

Exercise 11.14 Recall the schema Showings[Th(eater), Sc(reen), Ti(tle), Sn(ack)] of Sec-
tion 8.1, which satisfies the fd Th,Sc → Ti and the mvd Th →→ Sc,Ti | Sn. Consider the two
decompositions

R1 = {{Th, Sc,Ti}, {Th, Sn}}
R2 = {{Th, Sc,Ti}, {Th, Sc, Sn}}.

Are they one-to-one? dependency preserving? Describe anomalies that can arise if either of
these decompositions is used.

Exercise 11.15 [BB79] Verify that the schema of Example 11.2.10 has no BCNF decomposi-
tion that preserves dependencies.

268 Design and Dependencies

Exercise 11.16 [Mai80] Develop a polynomial time algorithm that finds a minimal cover of a
set of fd’s.

Exercise 11.17 Prove Theorem 11.2.14.

Exercise 11.18 [Mai83] Show that a schema (R[U], �) with 2n attributes and 2n fd’s can
have as many as 2n keys.

Exercise 11.19 [LO78] Let (S[V], L) be an fd schema. Show that the following problem is
np-complete: Given A ∈ V , is there a nontrivial fd Y → A implied by L, where Y is not a
superkey and A is not a key attribute?

0Exercise 11.20 [Var82b] For this exercise, you will exhibit an example of a schema (R,�),
where � consists of dependencies expressed in first-order logic (which may not be embedded
dependencies) and a decomposition R of R such that R is one-to-one but does not have the
lossless join property.

Consider the schema R[ABCD]. Given t ∈ I ∈ inst(R), t[A] is a key element for AB in I

if there is no s ∈ I with t[A]= s[A] and t[B] �= s[B]. The notion of t[C] being a key element
for CD is defined analogously. Let � consist of the constraints

(i) ∃t ∈ I such that both t[A] and t[C] are key elements.

(ii) If t ∈ I , then t[A] is a key element or t[C] is a key element.

(iii) If s, t ∈ I and s[A] or t[C] is a key element, then the tuple u is in I , where u[AB]=
s[AB] and u[CD]= t[CD].

Let R = {R1[AB], R2[CD]} be a decomposition of (R,�).

(a) Show that the decomposition R for (R,�) is one-to-one.

(b) Exhibit a reconstruction mapping for R. (The natural join will not work.)

Exercise 11.21 This and the following exercise provide one kind of characterization of the
relative information capacity of decompositions of relation schemas. Let U be a set of attributes,
let α = {X1, . . . , Xn} be a nonempty family of subsets of U , and let X = ∪ni=1Xi. The project-
join mapping determined by α, denoted PJα, is a mapping from instances over U to instances
over ∪ni=1Xi defined by PJα(I)= ��ni=1 (πXi

(I)). α is full if ∪ni=1 = U , in which case PJα is a
full project-join mapping.

Prove the following for instances I and J over U :

(a) πX(I)⊆ PJα(I)

Exercises 269

(b) PJα(PJα(I))= PJα(I)

(c) if I ⊆ J then PJα(I)⊆ PJα(J).

0Exercise 11.22 [BMSU81] Let U be a set of attributes. If α = {X1, . . . , Xn} is a nonempty
full family of subsets of U , then Fixpt(α) denotes {I over U | PJα(I)= I } (see the preceding
exercise). For α and β nonempty full families of subsets of U , β covers α, denoted α (β, if
for each set X ∈ α there is a set Y ∈ β such that X ⊆ Y . Prove for nonempty full families α, β
of subsets of U that the following are equivalent:

(a) α (β

(b) PJα(I)⊇ PJβ(I) for each instance I over U

(c) Fixpt(α)⊆ Fixpt(β).

Exercise 11.23 Given relational database schemas S and S′, we say that S′ dominates S using
the calculus, denoted S (calc S′, if there are calculus queries q : Inst(S)→ Inst(S′) and q ′ :
Inst(S′)→ Inst(S) such that q ◦ q ′ is the identity on Inst(S). Let schema R = (ABC, {A→ B})
and the decomposition R = {(AB, {A→ B}), (AC,∅)}. (a) Verify that R (calc R. (b) Show that
R �(calc R. Hint: For schemas S and S′, S′ dominates S absolutely, denoted S(abs S′, if there is
some n ≥ 0 such that for each finite subset d ⊆ dom with |d| ≥ n, |{I ∈ Inst(S) | adom(I) ⊆
d}| ≤ |{I ∈ Inst(S′) | adom(I) ⊆ d}|. Show that S (calc S′ implies S (abs S′. Then show that
R �(abs R.

0Exercise 11.24 [HY84] Let A and B be relational attributes. Consider the complex value type
T = 〈A, {B}〉, where each instance of T is a finite set of pairs having the form 〈a, b̂〉, where
a ∈ dom and b̂ is a finite subset of dom. Show that for each relational schema R, R (abs T and
T �(abs R. (See Exercise 11.23 for the definition of (abs.)

♠Exercise 11.25 [BV84b, CP84]

(a) Let (U,�) be a (full dependencies) schema and R an acyclic decomposition of U (in
the sense of acyclic joins). Then πR is one-to-one iff R has the lossless join property.
Hint: First prove the result for the case where the decomposition has two elements
(i.e., it is based on an mvd). Then generalize to acyclic decompositions, using an
induction based on the GYO algorithm.

(b) [CKV90] Show that (a) can be generalized to include unary ind’s in �.

Exercise 11.26 [Hon82] Let (U,�) be an fd schema and R= {R1, . . . , Rn} a decomposition
of U . Consider the following notions of “satisfaction” by I over R of �:

I |=1 �: if Ij |= πRj (�) for each j ∈ [1, n].
I |=2 �: if �� I |=�.
I |=3 �: if I= πR(I) for some I over U such that I |=�.

(a) Show that |=1 and |=2 are incomparable.

(b) Show that if R preserves dependencies, then |=1 implies |=2.

(c) What is the relationship of |=1 and |=2 to |=3?

(d) What is the relationship of all of these to the notion of satisfaction based on the weak
URA?

♠Exercise 11.27 [Hon82] Prove Theorem 11.3.4.

Exercise 11.28 [MUV84, Hon82] Prove Proposition 11.3.5.

