
10 A Larger Perspective

Alice: fd’s, jd’s, mvd’s, ejd’s, emvd’s, ind’s—it’s all getting very confusing.
Vittorio: Wait! We’ll use logic to unify it all.

Sergio: Yes! Logic will make everything crystal clear.
Riccardo: And we’ll get a better understanding of dependencies that make sense.

The dependencies studied in the previous chapters have a strong practical motivation
and provide a good setting for studying two of the fundamental issues in dependency

theory: deciding logical implication and constructing axiomatizations.
Several new dependencies were introduced in the late 1970s and early 1980s, some-

times motivated by practical examples and later motivated by a desire to understand funda-
mental theoretical properties of unirelational dependencies or to find axiomatizations for
known classes of dependencies. This process culminated with a rather general perspec-
tive on dependencies stemming from mathematical logic: Almost all dependencies that
have been introduced in the literature can be described as logical sentences having a sim-
ple structure, and further syntactic restrictions on that structure yield natural subclasses
of dependencies. The purpose of this chapter is to introduce this general class of depen-
dencies and its natural subclasses and to present important results and techniques obtained
for them.

The general perspective is given in the first section, along with a simple application of
logic to obtain the decidability of implication for a large class of dependencies. It turns out
that the chase is an invaluable tool for analyzing implication; this is studied in the second
section. Axiomatizations for important subclasses have been developed, again using the
chase; this is the topic of the third section. We conclude the chapter with a provocative
alternative view of dependencies stemming from relational algebra.

The classes of dependencies studied in this chapter include complex dependencies that
would not generally arise in practice. Even if they did arise, they are so intricate that they
would probably be unusable—it is unlikely that database administrators would bother to
write them down or that software would be developed to use or enforce them. Nevertheless,
it is important to repeat that the perspective and results discussed in this chapter have served
the important function of providing a unified understanding of virtually all dependencies
raised in the literature and, in particular, of providing insight into the boundaries between
tractable and intractable problems in the area.

216

10.1 A Unifying Framework 217

10.1 A Unifying Framework

The fundamental property of all of the dependencies introduced so far is that they essen-
tially say, “The presence of some tuples in the instance implies the presence of certain other
tuples in the instance, or implies that certain tuple components are equal.” In the case of
jd’s and mvd’s, the new tuples can be completely specified in terms of the old tuples, but
for ind’s this is not the case. In any case, all of the dependencies discussed so far can be
expressed using first-order logic sentences of the form

(∗) ∀x1 . . .∀xn [ϕ(x1, . . . , xn)→∃z1 . . . ∃zkψ(y1, . . . , ym)],

where {z1, . . . , zk} = {y1, . . . , ym} − {x1, . . . , xn}, and where ϕ is a (possibly empty) con-
junction of atoms and ψ a nonempty conjunction. In both ϕ and ψ , one finds relation
atoms of the form R(w1, . . . , wl) and equality atoms of the form w = w′, where each of
the w,w′, w1, . . . , wl is a variable.

Because we generally focus on sets of dependencies, we make several simplifying as-
sumptions before continuing (see Exercise 10.1a). These include that (1) we may eliminate
equality atoms from ϕ without losing expressive power; and (2) we can also assume with-
out loss of generality that no existentially quantified variable participates in an equality
atom in ψ . Thus we define an (embedded) dependency to be a sentence of the foregoing
form, where

1. ϕ is a conjunction of relation atoms using all of the variables x1, . . . , xn;

2. ψ is a conjunction of atoms using all of the variables z1, . . . , zk; and

3. there are no equality atoms in ψ involving existentially quantified variables.

A dependency is unirelational if at most one relation name is used, and it is multire-
lational otherwise. To simplify the presentation, the focus in this chapter is almost exclu-
sively on unirelational dependencies. Thus, unless otherwise indicated, the dependencies
considered here are unirelational.

We now present three fundamental classifications of dependencies.

Full versus embedded: A full dependency is a dependency that has no existential quanti-
fiers.

Tuple generating versus equality generating: A tuple-generating dependency (tgd) is a
dependency in which no equality atoms occur; an equality-generating dependency
(egd) is a dependency for which the right-hand formula is a single equality atom.

Typed versus untyped: A dependency is typed if there is an assignment of variables to
column positions such that (1) variables in relation atoms occur only in their assigned
position, and (2) each equality atom involves a pair of variables assigned to the same
position.

It is sometimes important to distinguish dependencies with a single atom in the right-
hand formula. A dependency is single head if the right-hand formula involves a single
atom; it is multi-head otherwise.

The following result is easily verified (Exercise 10.1b).

218 A Larger Perspective

Untyped

fd’s

ind’s

jd’s

mvd’s

egd’s Multi-head tgd’sSingle-head tgd’s

tgd’s

Embedded

Typed

Full

Figure 10.1: Dependencies

Proposition 10.1.1 Each (typed) dependency is equivalent to a set of (typed) egd’s
and tgd’s.

It is easy to classify the fd’s, jd’s, mvd’s, ejd’s, emvd’s and ind’s studied in Chapters 8
and 9 according to the aforementioned dimensions. All except the last are typed. During the
late 1970s and early 1980s the class of typed dependencies was studied in depth. In many
cases, the results obtained for dependencies and for typed dependencies are equivalent.
However, for negative results the typed case sometimes requires more sophisticated proof
techniques because it imposes more restrictions.

A classification of dependencies along the three axes is given in Fig. 10.1. The gray
square at the lower right indicates that each full multihead tgd is equivalent to a set of
single-head tgd’s. The intersection of ind’s and jd’s stems from trivial dependencies. For
example, R[AB]⊆ R[AB] and ��[AB] over relation R(AB) are equivalent [and are syn-
tactically the same when written in the form of (∗)].

There is a strong relationship between dependencies and tableaux. Tableaux provide
a convenient notation for expressing and working with dependencies. (As will be seen in
Section 10.4, the family of typed dependencies can also be represented using a formalism
based on algebraic expressions.) The tableau representation of two untyped egd’s is shown
in Figs. 10.2(a) and 10.2(b). These two egd’s are equivalent. Note that all egd’s can be
expressed as a pair (T , x = y), where T is a tableau and x, y ∈ var(T). If (T , x = y) is
typed, unirelational, and x, y are in the A column of T , then this is referred to as an A-egd.

Parts (c) and (d) of Fig. 10.2 show two full tgd’s that are equivalent. This is especially
interesting because, considered as tableau queries, (T ′, t) properly contains (T , t) (see
Exercise 10.4). As suggested earlier, each full tgd is equivalent to some set of full single-
head tgd’s. In the following, when considering full tgd’s, we will assume that they are
single head.

Part (e) of Fig. 10.2 shows a typed tgd that is not single head. To represent these within

10.1 A Unifying Framework 219

S′

A B

x y
y w2

x = z

S

A B C C

w1

u
x y
y w2

w1

z
z y w3 u y w3

y w4 z
z y w5

x = z

(a) (S, x = z) (b) (S′, x = z)

T

A B

x y1

x1 y1

x1 y

x

(c) (T, t)

yt

T ′

A B

x y1

x1 y1

x1 y2

x

(d) (T ′, t)

yt

T1

A B

x y1

x1 y1

x1 y2

x

(e) (T1, T2)

y3T2

x2 y2

x2 y
x′ y2

x′ y3

Figure 10.2: Five dependencies

the tableau notation, we use an ordered pair (T1, T2), where both T1 and T2 are tableaux.
This tgd is not equivalent to any set of single-head tgd’s (see Exercise 10.6b).

Finite versus Unrestricted Implication Revisited

We now reexamine the issues of finite versus unrestricted implication using the logical
perspective on dependencies. Because all of these lie within first-order logic, |=fin is co-r.e.
and |=unr is r.e. (see Chapter 2). Suppose that � = {σ1, . . . , σn} is a set of dependencies and
{σ } a dependency. Then � |=unr σ (� |=fin σ) iff there is no unrestricted (finite) model of
σ1 ∧ · · · ∧ σn ∧¬σ . If these are all full dependencies, then they can be rewritten in prenex
normal form, where the quantifier prefix has the form ∃∗∀∗. (Here each of the σi is uni-
versally quantified, and ¬σ contributes the existential quantifier.) The family of sentences
that have a quantifier prefix of this form (and no function symbols) is called the initially ex-
tended Bernays-Schönfinkel class, and it has been studied in the logic community since the
1920s. It is easily verified that finite and unrestricted satisfiability coincide for sentences
in this class (Exercise 10.3). It follows that finite and unrestricted implication coincide for
full dependencies and, as discussed in Chapter 9, it follows that implication is decidable.

220 A Larger Perspective

On the other hand, because fd’s and uind’s are dependencies, we know from Theorem 9.2.4
that the two forms of implication do not coincide for (embedded) dependencies, and both
are nonrecursive. Although not demonstrated here, these results have been extended to the
family of embedded multivalued dependencies (emvd’s).

To summarize:

Theorem 10.1.2

1. For full dependencies, finite and unrestricted implication coincide and are decid-
able.

2. For (typed) dependencies, finite and unrestricted implication do not coincide and
are both undecidable. In fact, this is true for embedded multivalued dependencies.
In particular, finite implication is not r.e., and unrestricted implication is not co-r.e.

10.2 The Chase Revisited

As suggested by the close connection between dependencies and tableaux, chasing is an in-
valuable tool for characterizing logical implication for dependencies. In this section we first
use chasing to develop a test for logical implication of arbitrary dependencies by full depen-
dencies. We also present an application of the chase for determining how full dependencies
are propagated to views. We conclude by extending the chase to work with embedded de-
pendencies. In this discussion we focus almost entirely on typed dependencies, but it will
be clear that the arguments can be modified to the untyped case.

Chasing with Full Dependencies

We first state without proof the natural generalization of chasing by fd’s and jd’s (Theo-
rem 8.4.12) to full dependencies (see Exercise 10.8). In this context we begin either with a
tableau T , or with an arbitrary tgd (T , T ′) or egd (T , x = y). The notion of applying a full
dependency to this is defined in the natural manner. Lemma 8.4.17 and the notation devel-
oped for it generalize naturally to this context, as does the following analog of Theorem
8.4.18:

Theorem 10.2.1 If � is a set of full dependencies and T is a tableau (τ a dependency),
then chasing T (τ) by � yields a unique finite result, denoted chase(T ,�) (chase(τ,�)).

Logical implication of (full or embedded) dependencies by sets of full dependencies
will now be characterized by a straightforward application of the techniques developed in
Section 8.4 (see Exercise 10.8). A dependency τ is trivial if

(a) τ is an egd (T , x = x); or

(b) τ is a tgd (T , T ′) and there is a substitution θ for T ′ such that θ(T ′)⊆ T and θ

is the identity on var(T) ∩ var(T ′).

Note that if τ is a full tgd, then (b) simply says that T ′ ⊆ T .

10.2 The Chase Revisited 221

A dependency τ is a tautology for finite (unrestricted) instances if each finite (unre-
stricted) instance of appropriate type satisfies τ—that is, if ∅ |=fin τ (∅ |=unr τ). It is easily
verified that a dependency is a tautology iff it is trivial.

The following now provides a simple test for implication by full typed dependencies:

Theorem 10.2.2 Let � be a set of full typed dependencies and τ a typed dependency.
Then � |= τ iff chase(τ,�) is trivial.

Recall that the chase relies on a total order ≤ on var. For egd (T , x = y) we assume
that x < y and that these are the least and second to least variables appearing in the tableau;
and for full tgd (T , t), t (A) is least in T (A) for each attribute A. Using this convention, we
can obtain the following:

Corollary 10.2.3 Let � be a set of full typed dependencies.

(a) If τ = (T , x = y) is a typed egd, then � |= τ iff x and y are identical or y �∈
var(chase(T ,�)).

(b) If τ = (T , t) is a full typed tgd, then � |= τ iff t ∈ chase(T ,�).

Using the preceding results, it is straightforward to develop a deterministic exponential
time algorithm for testing implication of full dependencies. It is also known that for both
the typed and untyped cases, implication is complete in exptime. (Note that, in contrast,
logical implication for arbitrary sets of initially extended Bernays-Schöfinkel sentences is
known to be complete in nondeterministic exptime.)

Dependencies and Views

On a bit of a tangent, we now apply the chase to characterize the interaction of full
dependencies and user views. Let R = {R1, . . . , Rn} be a database schema, where Rj has
associated set �j of full dependencies for j ∈ [1, n]. Set � = {Ri : σ | σ ∈�i}. Note that
the elements of � are tagged by the relation name they refer to. Suppose that a view is
defined by algebraic expression E : R → S[V]. It is natural to ask what dependencies will
hold in the view. Formally, we say that R : � implies E : σ , denoted R : � |= E : σ , if E(I)
satisfies σ for each I that satisfies �. The notion of R : � |= E : � for a set � is defined in
the natural manner.

To illustrate these notions in a simple setting, we state the following easily verified
result (see Exercise 10.10).

Proposition 10.2.4 Let (R[U], �) be a relation schema where � is a set of fd’s and
mvd’s, and let V ⊆ U . Then

(a) R : � |= [πV (R)] : X→ A iff � |=X→ A and XA⊆ V .

(b) R : � |= [πV (R)] : X→→ Y iff � |=X→→ Z for some X ⊆ V and Y = Z ∩ V .

Given a database schema R, a family � of tagged full dependencies over R, a view

222 A Larger Perspective

expression E mapping R to S[V], and a full dependency γ , is it decidable whether
R : � |= E : γ ? If E ranges over the full relational algebra, the answer is no, even if the
only dependencies considered are fd’s.

Theorem 10.2.5 It is undecidable, given database schema R, tagged fd’s �, algebra
expression E : R → S and fd σ over S, whether R : � |= E : σ .

Proof Let R = {R[U], S[U]}, σ = R : ∅→ U and � = {σ }. Given two algebra expres-
sions E1, E2 : S→ R, consider

E = R ∪ [E1(S)− E2(S)] ∪ [E2(S)− E1(S)]

Then R : � |= E : σ iff E1 ≡ E2. This is undecidable by Corollary 6.3.2.

In contrast, we now present a decision procedure, based on the chase, for inferring
view dependencies when the view is defined using the SPCU algebra.

Theorem 10.2.6 It is decidable whether R : � |= E : γ , if E is an SPCU query and
� ∪ {γ } is a set of (tagged) full dependencies.

Crux We prove the result for SPC queries that do not involve constants, and leave the
extension to include union and constants for the reader (Exercise 10.12).

Let E : R → S[V] be an SPC expression, where S �∈ R. Recall from Chapter 4 (The-
orem 4.4.8; see also Exercise 4.18) that for each such expression E there is a tableau
mapping τE = (T, t) equivalent to E.

Assume now that � is a set of full dependencies and γ a full tgd. (The case where γ is
an egd is left for the reader.) Let the tgd γ over S be expressed as the tableau (W,w). Create
a new free instance Z out of (T, t) and W as follows: For each tuple u ∈W , set Tu = ν(T)
where valuation ν maps t to u, and maps all other variables in T to new distinct variables.
Set Z= ∪u∈WTu. It can now be verified that R : � |= E : γ iff w ∈ E(chase(Z, �)).

In the case where� ∪ {γ } is a set of fd’s and mvd’s and the view is defined by an SPCU
expression, testing the implication of a view dependency can be done in polynomial time,
if jd’s are involved the problem is np-complete, and if full dependencies are considered the
problem is exptime-complete.

Recall from Section 8.4 that a satisfaction family is a family sat(R, �) for some set �
of dependencies. Suppose now that SPC expression E : R[U]→ S[V] is given, and that �
is a set of full dependencies over R. Theorem 10.2.6, suitably generalized, shows that the
family � of full dependencies implied by � for view E is recursive. This raises the natural
question: Does E(sat(R,�))= sat(�), that is, does � completely characterize the image
of sat(R,�) under E? The affirmative answer to this question is stated next. This result
follows from the proof of Theorem 10.2.6 (see Exercise 10.13).

10.2 The Chase Revisited 223

Theorem 10.2.7 If � is a set of full dependencies over R and E : R → S is an SPC
expression without constants, then there is a set � of full dependencies over S such that
E(sat(R, �))= sat(S, �).

Suppose now that E : R[U]→ S[V] is given, and � is a finite set of dependencies.
Can a finite set � be found such that E(sat(R,�))= sat(S, �)? Even in the case where
E is a simple projection and � is a set of fd’s, the answer to this question is sometimes
negative (Exercise 10.11c).

Chasing with Embedded Dependencies

We now turn to the case of (embedded) dependencies. From Theorem 10.1.2(b), it is
apparent that we cannot hope to generalize Theorem 10.2.2 to obtain a decision procedure
for (finite or unrestricted) implication of dependencies. As initially discussed in Chapter 9,
the chase need not terminate if dependencies are used. All is not lost, however, because we
are able to use the chase to obtain a proof procedure for testing unrestricted implication of
a dependency by a set of dependencies.

For nonfull tgd’s, we shall use the following rule. We present the rule as it applies to
tableaux, but it can also be used on dependencies.

tgd rule: Let T be a tableau, and let σ = (S, S′) be a tgd. Suppose that there is a valuation
θ for S that embeds S into T , but no extension θ ′ to var(S) ∪ var(S′) of θ such that
θ ′(S′)⊆ T . In this case σ can be applied to T .

Let θ1, . . . , θn be a list of all valuations having this property. For each i ∈ [1, n],
(nondeterministically) choose a distinct extension, i.e., an extension θ ′i to var(S) ∪
var(S′) of θi such that each variable in var(S′) − var(S) is assigned a distinct new
variable greater than all variables in T . (The same variable is not chosen in two
extensions θ ′i , θ

′
j , i �= j .)

The result of applying σ to T is T ∪ {θ ′i (S′) | i ∈ [1, n]}.
This rule is nondeterministic because variables not occurring in T are chosen for the

existentially quantified variables of σ . We assume that some fixed mechanism is used for
selecting these variables when given T , (S, S′), and θ .

The notion of a chasing sequence T = T1, T2, . . . of a tableau (or dependency) by a
set of dependencies is now defined in the obvious manner. Clearly, this sequence may be
infinite.

Example 10.2.8 Let � = {τ1, τ2, τ3}, where

T ′

A B C

w
x

y
y

w

τ2

D

z

x z

T ′′

A B C

x
x

τ3

D

z
z′

z = z′

T

A B C

w x
w y

τ1

D

x yt t′

224 A Larger Perspective

A B C

x1 x2

x1 x5

x3

x6

x10 x2 x6

(a)

x11 x5 x3

D

x4

x7

x12

x13

application
of τ1

A B C

x1 x2

x1 x5

x3

x6

x10 x2 x6

(b)

x11 x5 x3

D

x4

x7

x4

x7

application
of τ3

A B C

x1 x2

x1 x5

x3

x6

x10 x2 x6

(c)

x11 x5 x3

D

x4

x7

x4

x7

A B C

x1 x2

x1 x5

x3

x6

x10 x2 x6

(d)

x11 x5 x3

D

x4

x4

x4

x4

x1 x5

x11 x2

x20

x21

x1 x2 x22

x10 x5 x23

x4

x7

x7

x4

application
of τ2

x1 x5

x11 x2

x20

x21

x1 x2 x22

x10 x5 x23

x4

x4

x4

x4

application
of τ3

Figure 10.3: Parts of a chasing sequence

We show here only the relevant variables of τ1, τ2, and τ3; all other variables are
assumed to be distinct. Here τ3 ≡ B→D.

In Fig. 10.3, we show some stages of a chasing sequence that demonstrates that
� |=unr A→D. To do that, the chase begins with the tableau {〈x1, x2, x3, x4〉, 〈x1, x5, x6,

x7〉}. Figure 10.3 shows the results of applying τ1, τ3, τ2, τ3 in turn (left to right). This
sequence implies that � |=unr A→D, because variables x4 and x7 are identified.

Consider now the typed tgd’s:

T ′′′′

A B C

w
y

w

D

x y

T ′′′

A B C

w x
w y

D

x yt′′ t′′′

z

z

x
w

τ5τ4

10.2 The Chase Revisited 225

The chasing sequence of Fig. 10.3 also implies that � |=unr τ4, because (x10, x2, x6,

x4) is in the second tableau. On the other hand, we now argue that � �|=unr τ5. Consider
the chasing sequence beginning as the one shown in Fig. 10.3, and continuing by applying
the sequence τ1, τ3, τ2, τ3 repeatedly. It can be shown that this chasing sequence will not
terminate and that (x1, x2, x6, v) does not occur in the resulting infinite sequence for any
variable v (see Exercise 10.16). It follows that � �|=unr τ5; in particular, the infinite result
of the chasing sequence is a counterexample to this implication. On the other hand, this
chasing sequence does not alone provide any information about whether � |=fin τ5. It can
be shown that this also fails.

To ensure that all relevant dependencies have a chance to influence a chasing sequence,
we focus on chasing sequences that satisfy the following conditions:

(1) Whenever an egd is applied, it is applied repeatedly until it is no longer
applicable.

(2) No dependency is “starved” (i.e., each dependency that is applicable infinitely
often is applied infinitely often).

Even if these conditions are satisfied, it is possible to have two chasing sequences of a
tableau T by typed dependencies, where one is finite and the other infinite (see Exer-
cise 10.14).

Now consider an infinite chasing sequence T1 = T , T2, Let us denote it by T ,�.
Because egd’s may be applied arbitrarily late in T ,�, for each n, tuples of Tn may be
modified as the result of later applications of egd’s. Thus we cannot simply take the union
of some tail Tn, Tn+1, . . . to obtain the result of the chase. As an alternative, for the chasing
sequence T ,� = T1, T2, . . . , we define

chase(T ,�)= {u | ∃n ∀m> n(u ∈ Tm)}.

This is nonempty because (1) the “new” variables introduced by the tgd rule are always
greater than variables already present; and (2) when the egd rule is applied, the newer
variable is replaced by the older one.

By generalizing the techniques developed, it is easily seen that the (possibly infinite)
resulting tableau satisfies all dependencies in�. More generally, let� be a set of dependen-
cies and σ a dependency. Then one can show that � |=unr σ iff for some chasing sequence
σ,� of σ using �, chase(σ,�) is trivial. Furthermore, it can be shown that

• if for some chasing sequence σ,� of σ using �, chase(σ,�) is trivial, then it is so
for all chasing sequences of σ using �; and

• for each chasing sequence σ,� = T1, . . . , Tn, . . . of σ using�, chase(σ,�) is trivial
iff Ti is trivial for some i.

This shows that, for practical purposes, it suffices to generate some chasing sequence of σ
using � and stop as soon as some tableau in the sequence becomes trivial.

226 A Larger Perspective

10.3 Axiomatization

A variety of axiomatizations have been developed for the family of dependencies and for
subclasses such as the full typed tgd’s. In view of Theorem 10.1.2, sound and complete
recursively enumerable axiomatizations do not exist for finite implication of dependencies.
This section presents an axiomatization for the family of full typed tgd’s and typed egd’s
(which is sound and complete for both finite and unrestricted implication). A generalization
to the embedded case (for unrestricted implication) has also been developed (see Exercise
10.21). The axiomatization presented here is closely related to the chase. In the next
section, a very different kind of axiomatization for typed dependencies is discussed.

We now focus on the full typed dependencies (i.e., on typed egd’s and full typed
tgd’s). The development begins with the introduction of a technical tool for forming the
composition of tableaux queries. The axiomatization then follows.

Composition of Typed Tableaux

Suppose that τ = (T , t) and σ = (S, s) are two full typed tableau queries over relation
schema R. It is natural to ask whether there is a tableau query τ • σ corresponding to the
composition of τ followed by σ—that is, with the property that for each instance I over R,

(τ • σ)(I)= σ(τ(I))

and, if so, whether there is a simple way to construct it. We now provide an affirmative
answer to both questions. The syntactic composition of full typed tableau mappings will
be a valuable tool for combining pairs of full typed tgd’s in the axiomatization presented
shortly.

Let T = {t1, . . . , tn} and S = {s1, . . . , sm}. Suppose that tuple w is in σ(τ(I)). Then
there is an embedding ν of s1, . . . , sm into τ(I) such that ν(s)= w. It follows that for each
j ∈ [1,m] there is an embedding µj of T into I , with µj(t)= ν(sj). This suggests that the
tableau of τ • σ should have mn tuples, with a block of n tuples for each sj .

To be more precise, for each j ∈ [1,m], let Tsj be θj(T), where θj is a substitution that
maps t (A) to sj(A) for each attribute A of R and maps each other variable of T to a new,
distinct variable not used elsewhere in the construction. Now set

[S](T , t)≡ ∪{Tsj | j ∈ [1,m]} and τ • σ ≡ ([S](T , t), s).

The following is now easily verified (see Exercise 10.18):

Proposition 10.3.1 For full typed tableau queries τ and σ over R, and for each instance
I of R, τ • σ(I)= σ(τ(I)).

Example 10.3.2 The following table shows two full typed tableau queries and their
composition.

10.3 Axiomatization 227

T

A B

x y

w x

τ

C

z′

y

x y′ z

t

x y′ z′′

S

A B

u v

u v

σ

C

w′

w

u′ v w

s

A B

u v

u v

τ • σ

C

p1

w

u p2 w′
u p2 p3
u′ v p4
u′ p5 w
u′ p5 p6

It is straightforward to verify that the syntactic operation of composition is associative.
Suppose that τ and σ are full typed tableau queries. It can be shown by simple chasing

arguments that {τ, σ } and {τ • σ } are equivalent as sets of dependencies. It follows that full
typed tgd’s are closed under finite conjunction, in the sense that each finite set of full typed
tgd’s over a relation schema R is equivalent to a single full typed tgd. This property does
not hold in the embedded case (see Exercise 10.20).

An Axiomatization for Full Typed Dependencies

For full typed tgd’s, τ = (T , t) and σ = (S, s), we say that τ embeds into σ denoted
τ ↪→ σ , if there is a substitution ν such that ν(T)⊆ S and ν(t)= s. Recall from Chapter 4
that τ ⊇ σ (considered as tableau queries) iff τ ↪→ σ . As a result we have that if τ ↪→ σ ,
then τ |= σ , although the converse does not necessarily hold. Analogously, for A-egd’s
τ = (T , x = y) and σ = (S, v = w), we define τ ↪→ σ if there is a substitution ν such that
ν(T)⊆ S, and ν({x, y})= {v,w}. Again, if τ ↪→ σ , then τ |= σ .

We now list the axioms for full typed tgd’s:

FTtgd1: (triviality) For each free tuple t without constants, ({t}, t).
FTtgd2: (embedding) If τ and τ ↪→ σ , then σ .

FTtgd3: (composition) If τ and σ , then τ • σ .

The following rules focus exclusively on typed egd’s:

Tegd1: (triviality) If x ∈ var(T), then (T , x = x).

Tegd2: (embedding) If τ and τ ↪→ σ , then σ .

The final rules combining egd’s and full typed tgd’s use the following notation. Let
R[U] be a relation schema. For A ∈ U , A denotes U − {A}. Given typed A-egd τ =
(T , x = y) over R, define free tuples ux, uy such that ux(A)= x, uy(A)= y and ux[A]=
uy[A] consists of distinct variables not occurring in T . Define two full typed tgd’s τx =
(T ∪ {uy}, ux) and τy = (T ∪ {ux}, uy).

228 A Larger Perspective

FTD1: (conversion) If τ = (T , x = y), then τx and τy.

FTD2: (composition) If (T , t) and (S, x = y), then ([S](T , t), x = y).

We now have the following:

Theorem 10.3.3 The set {FTtgd1, FTtgd2, FTtgd3, Tegd1, Tegd2, FTD1, FTD2}
is sound and complete for (finite and unrestricted) logical implication of full typed
dependencies.

Crux Soundness is easily verified. We illustrate completeness by showing that the FTtgd
rules are complete for tgd’s. Suppose that � |= τ = (T , t), where � is a set of full typed
tgd’s and (T , t) is full and typed. By Theorem 10.2.2 there is a chasing sequence of T by
� yielding T ′ with t ∈ T ′. Let σ1, . . . , σn (n ≥ 0) be the sequence of elements of � used
in the chasing sequence. It follows that t ∈ σn(. . . (σ1(T) . . .), and by Proposition 10.3.1,
t ∈ (σ1 • · · · • σn)(T). This implies that (σ1 • · · · • σn) ↪→ (T , t). A proof of τ from � is
now obtained by starting with σ1 (or ({s}, s) if n= 0), followed by n− 1 applications of
FTtgd3 and one application of FTtgd2 (see Exercise (10.18b).

The preceding techniques and the chase can be used to develop an axiomatization of
unrestricted implication for the family of all typed dependencies.

10.4 An Algebraic Perspective

This section develops a very different paradigm for specifying dependencies based on the
use of algebraic expressions. Surprisingly, the class of dependencies formed is equivalent to
the class of typed dependencies. We also present an axiomatization that is rooted primarily
in algebraic properties rather than chasing and tableau manipulations.

We begin with examples that motivate and illustrate this approach.

Example 10.4.1 Let R[ABCD] be a relation schema. Consider the tgd τ of Fig. 10.4 and
the algebraic expression

πAC(πAB(R) �� πBC(R))⊆ πAC(R).

It is straightforward to verify that for each instance I over ABCD,

I |= τ iff πAC(πAB(I) �� πBC(I))⊆ πAC(I).

Now consider dependency σ . One can similarly verify that for each instance I over
ABCD,

I |= σ iff πAC(πAB(I) �� πBC(I))⊆ πAC(πAD(I) �� πCD(I)).

10.4 An Algebraic Perspective 229

S

A B C

x
z

x

D

w′

T

A B C

x y′
z

D

x zt S′

y′
y′

z w′

y′

στ

Figure 10.4: Dependencies of Example 10.4.1

The observation of this example can be generalized in the following way. A project-
join (PJ) expression is an algebraic expression over a single relation schema using only
projection and natural join. We describe next a natural recursive algorithm for translating
PJ expressions into tableau queries (see Exercise 10.23). (This algorithm is also implicit in
the equivalence proofs of Chapter 4.)

Algorithm 10.4.2

Input: a PJ expression E over relation schema R[A1, . . . , An]

Output: a tableau query (T , t) equivalent to E

Basis: If E is simply R, then return ({〈x1, . . . , xn〉}, 〈x1, . . . , xn〉).
Inductive steps:

1. If E is πX(q) and the tableau query of q is (T , t), then return (T , πX(t)).
2. Suppose E is q1 �� q2 and the tableau query of qi is (Ti, ti) for i ∈ [1, 2].

Let X be the intersection of the output sorts of q1 and q2. Assume without
loss of generality that the two tableaux use distinct variables except that
t1(A)= t2(A) for A ∈X. Then return (T1 ∪ T2, t1 �� t2).

Suppose now that (T , T ′) is a typed dependency with the property that for some free
tuple t , (T , t) is the tableau associated by this algorithm with PJ expression E, and (T ′, t) is
the tableau associated with PJ expression E′. Suppose also that the only variables common
to T and T ′ are those in t . Then for each instance I , I |= (T , T ′) iff E(I)⊆ E′(I).

This raises three natural questions: (1) Is the family of PJ inclusions equivalent to the
set of typed tgd’s? (2) If not, can this paradigm be extended to capture all typed tgd’s? (3)
Can this paradigm be extended to capture typed egd’s as well as tgd’s?

The answer to the first question is no (see Exercise 10.24).
The answer to the second and third questions is yes. This relies on the notion

of extended relations and extended project-join expressions. Let R[A1, . . . , An] be a
relation schema. For each i ∈ [1, n], we suppose that there is an infinite set of at-
tributes A1

i , A
2
i , . . . , called copies of Ai. The extended schema of R is the schema

R[A1
1, . . . , A

1
n, A

2
1, . . . , A

2
n, . . .]. For an instance I of R, the extended instance of R corre-

sponding to I , denoted I , has one “tuple” u for each tuple u ∈ I , where u(Aj

i)= u(Ai) for
each i ∈ [1, n] and j > 0.

An extended project-join expression over R is a PJ expression over R such that a

230 A Larger Perspective

T

A B C

x

x = x′

D

T

A B C

x z

D

x y′T ′

z′

στ

w′
w′

z′ wx′

y′ z w

z w′
z′ w′

x′ z′ w

Figure 10.5: tgd and egd of Example 10.4.3

projection operator is applied first to each occurrence ofR. (This ensures that the evaluation
and the result of such expressions involve only finite objects.) Given two extended PJ
expressions E and E′ with the same target sort, and instance I over R, E(I) ⊆e E

′(I)
denotes E(I)⊆ E′(I).

An algebraic dependency is a syntactic expression of the form E ⊆e E
′, where E and

E′ are extended PJ expressions over a relation schema R with the same target sort. An
instance I over R satisfies E ⊆e E

′ if E(I)⊆e E
′(I)—that is, if E(I)⊆ E′(I).

This is illustrated next.

Example 10.4.3 Consider the dependency τ of Fig. 10.5. Let

E = πACD1(R) �� πC1D1(R) �� πA1C1D(R).

Here we use A,A1, . . . to denote different copies the attribute A, etc.
It can be shown that, for each instance I over ABCD, I |= τ iff E1(I)⊆e E2(I), where

E1 = πACD(E)

E2 = πACD(πAB1(R) �� πB1CD(R)).

(See Exercise 10.25).
Consider now the functional dependency A→ BC over ABCD. This is equivalent to

πABC(R) �� πAB1C1(R)⊆e πABCB1C1(R).
Finally, consider σ of Fig. 10.5. This is equivalent to F1 ⊆e F2, where

F1 = πAA1(E)

F2 = πAA1(R).

We next see that algebraic dependencies correspond precisely to typed dependencies.

Theorem 10.4.4 For each algebraic dependency, there is an equivalent typed depen-
dency, and for each typed dependency, there is an equivalent algebraic dependency.

10.4 An Algebraic Perspective 231

Crux Let R[A1, . . . , An] be a relation schema, and let E ⊆e E
′ be an algebraic depen-

dency over R, where E and E′ have target sort X. Without loss of generality, we can
assume that there is k such that the sets of attributes involved in E and E′ are contained
in Û = {A1

1, . . . , A
1
n, . . . , A

k
1, . . . , A

k
n}. Using Algorithm 10.4.2, construct tableau queries

τ = (T , t) and τ ′ = (T ′, t ′) over Û corresponding to E and E′. We assume without loss of
generality that τ and τ ′ do not share any variables except that t (A)= t ′(A) for each A ∈X.

Consider T (over Û). For each tuple s ∈ T and j ∈ [1, k],

• construct an atom R(x1, . . . , xn), where xi = s(A
j

i) for each i ∈ [1, n];

• construct atoms s(Aj

i)= s(A
j ′
i) for each i∈ [1, n] and j, j ′ satisfying

1≤ j < j ′ ≤ k.

Let ϕ(x1, . . . , xp) be the conjunction of all atoms obtained from τ in this manner. Let
ψ(y1, . . . , yq) be constructed analogously from τ ′. It can now be shown (Exercise 10.26)
that E ⊆e E

′ is equivalent to the typed dependency

∀x1 . . . xp(ϕ(x1, . . . , xp)→∃z1 . . . zrψ(y1, . . . , yq)),

where z1, . . . , zr is the set of variables in {y1, . . . , yq} − {x1, . . . , xp}.
For the converse, we generalize the technique used in Example 10.4.3. For each at-

tribute A, one distinct copy of A is used for each variable occurring in the A column.

An Axiomatization for Algebraic Dependencies

Figure 10.6 shows a family of inference rules for algebraic dependencies. Each of these
rules stems from an algebraic property of join and project, and only the last explicitly uses
a property of extended instances. (It is assumed here that all expressions are well formed.)

The use of these rules to infer dependencies is considered in Exercises 10.31, and
10.32.

It can be shown that:

Theorem 10.4.5 The family {AD1, . . . , AD8} is sound and complete for inferring
unrestricted implication of algebraic dependencies.

To conclude this discussion of the algebraic perspective on dependencies, we consider
a new operation, direct product, and the important notion of faithfulness.

Faithfulness and Armstrong Relations

We show now that sets of typed dependencies have Armstrong relations,1 although these
may sometimes be infinite. To accomplish this, we first introduce a new way to combine
instances and an important property of it.

1 Recall that given a set � of dependencies over some schema R, an Armstrong relation for � is an
instance I over R that satisfies � and violates every dependency not implied by �.

232 A Larger Perspective

AD1: (Idempotency of Projection)
(a) πX(πYE)=e πXE

(b) πsort(E)E =e E

AD2: (Idempotency of Join)
(a) E �� πXE =e E

(b) πsort(E)(E �� E′)⊆e E

AD3: (Monotonicity of Projection)
If E ⊆e E

′ then πXE ⊆e πXE
′

AD4: (Monotonicity of Join)
If E ⊆e E

′, then E �� E′′ ⊆e E
′ �� E′′

AD5: (Commutativity of Join)
E �� E′ =e E

′ �� E
AD6: (Associativity of Join)

(E �� E′) �� E′′ =e E �� (E′ �� E′′)
AD7: (Distributivity of Projection over Join)

Suppose that X ⊆ sort(E) and Y ⊆ sort(E′). Then
(a) πX∪Y (E �� E′)⊆e πX∪Y (E �� πYE′).
(b) If sort(E) ∩ sort(E′)⊆ Y , then equality holds in (a).

AD8: (Extension)
If X ⊆ sort(R) and A,A′ are copies of the same attribute, then
πAA′R �� πAXR =e πAA′XR.

Figure 10.6: Algebraic dependency axioms

Let R be a relation schema of arity n. We blur our notation and use elements of
dom × dom as if they were elements of dom. Given tuples u = 〈x1, . . . , xn〉 and v =
〈y1, . . . , yn〉, we define the direct product of u and v to be

u⊗ v = 〈(x1, y1), . . . , (xn, yn)〉.

The direct product of two instances I, J over R is

I ⊗ J = {u⊗ v | u ∈ I, v ∈ J }.

This is generalized to form k-ary direct product instances for each finite k. Furthermore,
if J is a (finite or infinite) index set and {Ij | j ∈ J } is a family of instances over R, then
⊗{Ij | j ∈ J } denotes the (possibly infinite) direct product of this family of instances.

A dependency σ is faithful if for each family {Ij | j ∈ J } of nonempty instances,

⊗{Ij | j ∈ J } |= σ if and only if ∀j ∈ J , Ij |= σ.

(The restriction that the instances be nonempty is important—if this were omitted then no
nontrivial dependency would be faithful.)

The following holds because the ⊗ operator commutes with project, join, and “exten-
sion” (see Exercise 10.29).

Bibliographic Notes 233

Proposition 10.4.6 The family of typed dependencies is faithful.

We can now prove that each set of typed dependencies has an Armstrong relation.

Theorem 10.4.7 Let � be a set of typed dependencies over relation R. Then there is a
(possibly infinite) instance I� such that for each typed dependency σ over R, I� |= σ iff
� |=unr σ .

Proof Let � be the set of typed dependencies over R not in �∗. For each γ ∈ �, let
Iγ be a nonempty instance that satisfies � but not γ . Then ⊗{Iγ | γ ∈ �} is the desired
relation.

This result cannot be strengthened to yield finite Armstrong relations because one can
exhibit a finite set of typed tgd’s with no finite Armstrong relation.

Bibliographic Notes

The papers [FV86, Kan91, Var87] all provide excellent surveys on the motivations and
history of research into relational dependencies; these have greatly influenced our treatment
of the subject here.

Because readers could be overwhelmed by the great number of dependency theory
terms we have used a subset of the terminology. For instance, the typed single-head tgd’s
(that were studied in depth) are called template dependencies. In addition, the typed unire-
lational dependencies that are considered here were historically called embedded implica-
tional dependencies (eid’s); and their full counterparts were called implicational depen-
dencies (id’s). We use this terminology in the following notes.

After the introduction of fd’s and mvd’s, there was a flurry of research into special
classes of dependencies, including jd’s and ind’s. Embedded dependencies were first intro-
duced in [Fag77b], which defined embedded multivalued dependencies (emvd’s); these are
mvd’s that hold in a projection of a relation. Embedded jd’s are defined in the analogous
fashion. This is distinct from projected jd’s [MUV84]—these are template dependencies
that correspond to join dependencies, except that some of the variables in the summary
row may be distinct variables not occurring elsewhere in the dependency. Several other spe-
cialized dependencies were introduced. These include subset dependencies [SW82], which
generalize mvd’s; mutual dependencies [Nic78], which say that a relation is a 3-ary join;
generalized mutual dependencies [MM79]; transitive dependencies [Par79], which gener-
alize fd’s and mvd’s; extended transitive dependencies [PPG80], which generalize mutual
dependencies and transitive dependencies; and implied dependencies [GZ82], which form
a specialized class of egd’s. In many cases these classes of dependencies were introduced
in attempts to provide axiomatizations for the emvd’s, jd’s, or superclasses of them. Al-
though most of the theoretical work studies dependencies in an abstract setting, [Sci81,
Sci83] study families of mvd’s and ind’s as they arise in practical situations.

The proliferation of dependencies spawned interest in the development of a unifying
framework that subsumed essentially all of them. Nicolas [Nic78] is credited with first ob-
serving that fd’s, mvd’s, and others have a natural representation in first-order logic. At

234 A Larger Perspective

roughly the same time, several researchers reached essentially the same generalized class
of dependencies that was studied in this chapter. [BV81a] introduced the class of tgd’s and
egd’s, defined using the paradigm of tableaux. Chasing was studied in connection with both
full and embedded dependencies in [BV84c]. Reference [Fag82b] introduced the class of
typed dependencies, essentially the same family of dependencies but presented in the par-
adigm of first-order logic. Simultaneously, [YP82] introduced the algebraic dependencies,
which present the same class in algebraic terms. A generalization of algebraic dependencies
to the untyped case is presented in [Abi83].

Related general classes of dependencies introduced at this time are the general depen-
dencies [PJ81], which are equivalent to the full typed tgd’s, and generalized dependency
constraints [GJ82], which are the full dependencies.

Importantly, several kinds of constraints that lie outside the dependencies described in
this chapter have been studied in the literature. Research on the use of arbitrary first-order
logic sentences as constraints includes [GM78, Nic78, Var82b]. A different extension of
dependencies based on partitioning relationships, which are not expressible in first-order
logic, is studied in [Cos87]. Another kind of dependency is the afunctional dependency of
[BP83], which, as the name suggests, focuses on the portions of an instance that violate
an fd. The partition dependencies [CK86] are not first-order expressible and are powerful;
interestingly, finite and unrestricted implication coincide for this class of dependencies and
are decidable in ptime. Order [GH83] and sort-set dependencies [GH86] address proper-
ties of instances defined in terms of orderings on the underlying domain elements. There is
provably no finite axiomatization for order dependencies, or for sort-set dependencies and
fd’s considered together (Exercise 9.8).

Another broad class of constraints not included in the dependencies discussed in this
chapter is dynamic constraints, which focus on how data change over time [CF84, Su92,
Via87, Via88]; see Section 22.6.

As suggested by the development of this chapter, one of the most significant theoretical
directions addressed in connection with dependencies has been the issue of decidability of
implication. The separation of finite and unrestricted implication, and the undecidability
of the implication problem, were shown independently for typed dependencies in [BV81a,
CLM81]. Subsequently, these results were independently strengthened to projected jd’s in
[GL82, Var84, YP82]. Then, after nearly a decade had elapsed, this result was strengthened
to include emvd’s [Her92].

On the other hand, the equivalence of finite and unrestricted implication for full depen-
dencies was observed in [BV81a]. That deciding implication for full typed dependencies
is complete in exptime is due to [CLM81]. See also [BV84c, FUMY83], which present
numerous results on full and embedded typed dependencies. The special case of decid-
ing implication of a typed dependency by ind’s has been shown to be pspace-complete
[JK84b].

The issue of inferring view dependencies was first studied in [Klu80], where Theo-
rem 10.2.5 was presented. Reference [KP82] developed Theorem 10.2.6.

The issue of attempting to characterize view images of a satisfaction family as a
satisfaction family was first raised in [GZ82], where Exercise 10.11b was shown. Theo-
rem 10.2.7 is due to [Fag82b], although a different proof technique was used there. Refer-
ence [Hul84] demonstrates that some projections of satisfaction families defined by fd’s

Exercises 235

cannot be characterized by any finite set of full dependencies (see Exercise 10.11c,d).
That investigation is extended in [Hul85], where it is shown that if � is a family of
fd’s over U and V ⊆ U , and if πV (sat(U,�)) �= sat(V , �) for any set � of fd’s, then
πV (sat(U,�)) �= sat(V , �) for any finite set � of full dependencies.

Another primary thrust in the study of dependencies has been the search for axiom-
atizations for various classes of dependencies. The axiomatization presented here for full
typed dependencies is due to [BV84a], which also provides an axiomatization for the em-
bedded case. The axiomatization for algebraic dependencies is from [YP82]. An axiom-
atization for template dependencies is given in [SU82] (see Exercise 10.22). Research on
axiomatizations for jd’s is described in the Bibliographic Notes of Chapter 8.

The direct product construction is from [Fag82b]. Proposition 10.4.6 is due to
[Fag82b], and the proof presented here is from [YP82]. A finite set of tgd’s with no fi-
nite Armstrong relation is exhibited in [FUMY83]. The direct product has also been used
in connection with tableau mappings and dependencies [FUMY83] (see Exercise 10.19).
The direct product has been studied in mathematical logic; the notion of (upward) faithful
presented here (see Exercise 10.28) is equivalent to the notion of “preservation under direct
product” found there (see, e.g., [CK73]); and the notion of downward faithful is related to,
but distinct from, the notion of “preservation under direct factors.”

Reference [MV86] extends the work on direct product by characterizing the expressive
power of different families of dependencies in terms of algebraic properties satisfied by
families of instances definable using them.

Exercises

Exercise 10.1

(a) Show that for each first-order sentence of the form (∗) of Section 10.1, there exists
an equivalent finite set of dependencies.

(b) Show that each dependency is equivalent to a finite set of egd’s and tgd’s.

Exercise 10.2 Consider the tableaux in Example 10.3.2. Give σ • σ . Compare it (as a map-
ping) to σ . Give σ • τ . Compare it (as a mapping) to τ • σ .

Exercise 10.3 [DG79] Let ϕ be a first-order sentence with equality but no function symbols
that is in prenex normal form and has quantifier structure ∃∗∀∗. Prove that ϕ has an unrestricted
model iff it has a finite model.

Exercise 10.4 This exercise concerns the dependencies of Fig. 10.2.

(a) Show that (S, x = z) and (S ′, x = z) are equivalent.

(b) Show that (T , t) and (T ′, t) are equivalent, but that (T , t) ⊂ (T ′, t) as tableau
queries.

Exercise 10.5 Let R[ABC] be a relation scheme. We construct a family of egd’s over R as
follows. For n≥ 0, let

Tn = {〈xi, yi, z2i〉, 〈xi, yi+1, z2i+1〉 | i ∈ [0, n]}

and set τn = (Tn, z0 = z2n+1). Note that τ0 ≡ A→ C.

236 A Larger Perspective

(a) Prove that as egd’s, τi ≡ τj for all i, j > 0.

(b) Prove that τ0 |= τ1, but not vice versa.

Exercise 10.6

(a) [FUMY83] Prove that there are exactly three distinct (up to equivalence) full typed
single-head tgd’s over a binary relation. Hint: See Exercise 10.4.

(b) Prove that there is no set of single-head tgd’s that is equivalent to the typed tgd
(T1, T2) of Fig. 10.2.

(c) Exhibit an infinite chain τ1, τ2, . . . of typed tgd’s over a binary relation where each
is strictly weaker than the previous (i.e., such that τi |= τi+1 but τi+1 �|= τi for each
i ≥ 1).

0Exercise 10.7 [FUMY83] Let U = {A1, . . . , An} be a set of attributes.

(a) Consider the full typed single-head tgd (full template dependency) τstrongest =
({t1, . . . , tn}, t), where ti(Ai)= t (Ai) for i ∈ [1, n], and all other variables used are
distinct. Prove that τstrongest is the “strongest” template dependency for U , in the
sense that for each (not necessarily full) template dependency τ overU , τstrongest |= τ .

(b) Let τweakest be the template dependency (S, s), where s(Ai) = xi for i ∈ [1, n] and
where S includes all tuples s ′ over U that satisfy (1) s ′(Ai)= xi or yi for i ∈ [1, n],
and (2) s ′(Ai) �= xi for at least one i ∈ [1, n]. Prove that τweakest is the “weakest” full
template dependency U , in the sense that for each nontrivial full template depen-
dency τ over U , τ |= τweakest.

(c) For V ⊆ U , a template dependency over U is V -partial if it can be expressed as a
tableau (T , t), where t is over V . For V ⊆ U exhibit a “weakest” V -partial template
dependency.

Exercise 10.8 [BV84c] Prove Theorems 10.2.1 and 10.2.2.

Exercise 10.9 Prove that the triviality problem for typed tgd’s is np-complete. Hint: Use a
reduction from tableau containment (Theorem 6.2.3).

Exercise 10.10

(a) Prove Proposition 10.2.4.

(b) Develop an analogous result for the binary natural join.

Exercise 10.11 Let R[ABCDE] and S[ABCD] be relation schemas, and let V = ABCD. Con-
sider � = {A→ E,B→ E,CE →D}.

(a) Describe the set � of fd’s implied by � on πV (R).

(b) [GZ82] Show that sat(πV (R,�)) �= sat(S, �). Hint: Consider the instance J =
{〈a, b1,

c, d1〉, 〈a, b, c1, d2〉, 〈a1, b, c, d3〉} over S.

0 (c) [Hul84] Show that there is no finite set ϒ of full dependencies over S such that
πV (sat(R,�))= sat(S,ϒ) Hint: Say that a satisfaction family F over R has rank
n if F = sat(R, �) for some � where the tableau in each dependency of � has ≤ n

elements. Suppose that πV (sat(R,�)) has rank n. Exhibit an instance J over V with
n+ 1 elements such that (a) J �∈ πV (sat(R,�)), and (b) J satisfies each dependency
σ that is implied for πV (R) by �, and that has ≤ n elements in its tableau. Conclude
that J ∈ sat(V , �), a contradiction.

Exercises 237

0 (d) [Hul84] Develop a result for mvd’s analogous to part (c).

Exercise 10.12 [KP82] Complete the proof of Theorem 10.2.6 for the case where � is a set of
full dependencies and γ is a full tgd. Show how to extend that proof (a) to the case where γ is
an egd; (b) to include union; and (c) to permit constants in the expression E. Hint: For (a), use
the technique of Theorem 8.4.12; for (b) use union of tableaux, but permitting multiple output
rows; and for (c) recall Exercise 8.27b.

Exercise 10.13 [Fag82b] Prove Theorem 10.2.7.

Exercise 10.14 Exhibit a typed tgd τ and a set � of typed dependencies such that � |= τ , and
there are two chasing sequences of τ by �, both of which satisfy conditions (1) and (2), in the
definition of chasing for embedded dependencies in Section 10.2, where one sequence is finite
and the other is infinite.

Exercise 10.15 Consider these dependencies:

A B C

x
y

z
z

x

τ2

y

τ3

A B C

x y
x z

τ1

y z

AC → B

(a) Starting with input T = {〈1, 2, 3〉, 〈1, 4, 5〉}, perform four steps of the chase using
these dependencies.

(b) Prove that {τ1, τ2, τ3} �|=unr A→ B.

0Exercise 10.16

(a) Prove that the chasing sequence of Example 10.2.8 does not terminate; then use this
sequence to verify that � �|=unr τ5.

(b) Show that � �|=fin τ5.

(c) Exhibit a set �′ of dependencies and a dependency σ ′ such that the chasing sequence
of σ ′ with �′ is infinite, and such that �′ �|=unr σ

′ but �′ |=fin σ
′.

♠Exercise 10.17 [BV84c] Suppose that T ,� is a chasing sequence. Prove that chase(T ,�)

satisfies �.

Exercise 10.18 [BV84a] (a) Prove Proposition 10.3.1. (b) Complete the proof of Theo-
rem 10.3.3.

Exercise 10.19 [FUMY83] This exercise uses the direct product construction for combining
full typed tableau mappings. Let R be a fixed relation schema of arity n. The direct product
of free tuples and tableaux is defined as for tuples and instances. Given two full typed tgd’s
τ = (T , t) and τ ′ = (T ′, t ′) over relation schema R, their direct product is

τ ⊗ τ ′ = (T ⊗ T ′, t ⊗ t ′).

(a) Let τ, σ be full typed single-head tgd’s over R. Prove that τ ⊗ σ is equivalent to
{τ, σ }.

238 A Larger Perspective

(b) Are τ ⊗ σ and τ • σ comparable as tableau queries under ⊆, and, if so, how?

(c) Show that the family of typed egd’s that have equality atoms referring to the same
column of R is closed under finite conjunction.

Exercise 10.20 [FUMY83]

(a) Let τ and τ ′ be typed tgd’s. Prove that τ |=unr τ
′ iff τ |=fin τ

′. Hint: Show that chasing
will terminate in this case.

(b) Prove that there is a pair τ, τ ′ of typed tgd’s for which there is no typed tgd τ ′′
equivalent to {τ, τ ′}. Hint: Assume that typed tgd’s were closed under conjunction in
this way. Use part (a).

0Exercise 10.21 [BV84a] State and prove an axiomatization theorem for the family of typed
dependencies.

Exercise 10.22 [SU82] Exhibit a set of axioms for template dependencies (i.e., typed single-
head tgd’s), and prove that it is sound and complete for unrestricted logical implication.

Exercise 10.23 Prove that Algorithm 10.4.2 is correct. (See Exercise 4.18a).

Exercise 10.24

(a) Consider the full typed tgd

τ = ({〈x, y ′〉, 〈x ′, y ′〉, 〈x ′, y〉}, 〈x, y〉).

Prove that there is no pair E,E′ of (nonextended) PJ expressions such that τ is
equivalent to E ⊆ E′ [i.e., such that I |= τ iff E(I)⊆ E′(I)].

(b) Let τ be as in Fig. 10.5. Prove that there is no pair E,E′ of (nonextended) PJ
expressions such that τ is equivalent to E ⊆ E′.

Exercise 10.25 In connection with Example 10.4.3,

(a) Prove that τ is equivalent to E1 ⊆e E2.

(b) Prove that A→ BC is equivalent to πABC(R) �� πAB1C1(R)⊆e πABCB1C1(R).

(c) Prove that σ is equivalent to F1 ⊆e F2.

0Exercise 10.26 Complete the proof of Theorem 10.4.4.

Exercise 10.27 An extended PJ expression E is shallow if it has the form πX(R) or the form
πX(πY1(R) �� · · · �� πYn(R)). An algebraic dependency E ⊆e E

′ is shallow if E and E′ are
shallow. Prove that every algebraic dependency is equivalent to a shallow one.

Exercise 10.28 [Fag82b] A dependency σ is upward faithful (with respect to direct products)
if, for each family of nonempty instances {Ij | j ∈ J },

∀j ∈ J , Ij |= σ implies ⊗ {Ij | j ∈ J } |= σ.

Analogously, σ is downward faithful if

⊗{Ij | j ∈ J } |= σ implies ∀j ∈ J , Ij |= σ.

Exercises 239

(a) Show that the constraint

∀x, y, y ′, z, z′(R(x, y, z) ∧ R(x, y ′, z′)→ (y = y ′ ∨ z= z′))

is downward faithful but not upward faithful.

(b) Show that the constraint

∀x, y, z(R(x, y) ∧ R(y, z)→ R(x, z))

is upward faithful but not downward faithful.

Exercise 10.29 [Fag82b, YP82] Prove Proposition 10.4.6.

Exercise 10.30 [Fag82b] The direct product operator ⊗ is extended to instances of database
schema R = {R1, . . . , Rn} by forming, for each i ∈ [1, n], a direct product of the relation
instances associated with Ri. Let R = {P [A],Q[A]} be a database schema. Show that the empty
set of typed dependencies over R has no Armstrong relation. Hint: Find typed dependencies
σ1, σ2 over R such that ∅ |= (σ1 ∨ σ2) but ∅ �|= σ1 and ∅ �|= σ2.

0Exercise 10.31 [YP82] Let R[ABCD] be a relation schema. The pseudo-transitivity rule for
multivalued dependencies (Chapter 8) implies, given A→→ B and B →→ C, that A→→ C.
Express this axiom in the paradigm of algebraic dependencies. Prove it using axioms {AD1,
. . . , AD7} (without using extended relations).

0Exercise 10.32 Infer the three axioms for fd’s from rules {A1, . . . , A8}.

Exercise 10.33 [YP82] Prove that {A1, . . . , A8} is sound.

