
1 Database Systems

Alice: I thought this was a theory book.
Vittorio: Yes, but good theory needs the big picture.

Sergio: Besides, what will you tell your grandfather when he asks what you study?
Riccardo: You can’t tell him that you’re studying the fundamental implications of

genericity in database queries.

Computers are now used in almost all aspects of human activity. One of their main
uses is to manage information, which in some cases involves simply holding data for

future retrieval and in other cases serving as the backbone for managing the life cycle of
complex financial or engineering processes. A large amount of data stored in a computer
is called a database. The basic software that supports the management of this data is
called a database management system (dbms). The dbms is typically accompanied by a
large and evergrowing body of application software that accesses and modifies the stored
information. The primary focus in this book is to present part of the theory underlying
the design and use of these systems. This preliminary chapter briefly reviews the field of
database systems to indicate the larger context that has led to this theory.

1.1 The Main Principles

Database systems can be viewed as mediators between human beings who want to use
data and physical devices that hold it (see Fig. 1.1). Early database management was based
on explicit usage of file systems and customized application software. Gradually, princi-
ples and mechanisms were developed that insulated database users from the details of the
physical implementation. In the late 1960s, the first major step in this direction was the de-
velopment of three-level architecture. This architecture separated database functionalities
into physical, logical, and external levels. (See Fig. 1.2. The three views represent various
ways of looking at the database: multirelations, universal relation interface, and graphical
interface.)

The separation of the logical definition of data from its physical implementation is
central to the field of databases. One of the major research directions in the field has
been the development and study of abstract, human-oriented models and interfaces for
specifying the structure of stored data and for manipulating it. These models permit the
user to concentrate on a logical representation of data that resembles his or her vision
of the reality modeled by the data much more closely than the physical representation.

3



4 Database Systems

DBMS

Figure 1.1: Database as mediator between humans and data

Several logical data models have been developed, including the hierarchical, network,
relational, and object oriented. These include primarily a data definition language (DDL)
for specifying the structural aspects of the data and a data manipulation language (DML)
for accessing and updating it. The separation of the logical from the physical has resulted
in an extraordinary increase in database usability and programmer productivity.

Another benefit of this separation is that many aspects of the physical implementa-
tion may be changed without having to modify the abstract vision of the database. This
substantially reduces the need to change existing application programs or retrain users.

The separation of the logical and physical levels of a database system is usually called
the data independence principle. This is arguably the most important distinction between
file systems and database systems.

The second separation in the architecture, between external and logical levels, is also
important. It permits different perspectives, or views, on the database that are tailored to
specific needs. Views hide irrelevant information and restructure data that is retained. Such
views may be simple, as in the case of automatic teller machines, or highly intricate, as in
the case of computer-aided design systems.

A major issue connected with both separations in the architecture is the trade-off
between human convenience and reasonable performance. For example, the separation
between logical and physical means that the system must compile queries and updates
directed to the logical representation into “real” programs. Indeed, the use of the relational
model became widespread only when query optimization techniques made it feasible. More
generally, as the field of physical database optimization has matured, logical models have
become increasingly remote from physical storage. Developments in hardware (e.g., large
and fast memories) are also influencing the field a great deal by continually changing the
limits of feasibility.



1.2 Functionalities 5

View 2 View 3View 1
External Level

Physical Level

Logical Level

Figure 1.2: Three-level architecture of database systems

1.2 Functionalities

Modern dbms’s include a broad array of functionalities, ranging from the very physical
to the relatively abstract. Some functionalities, such as database recovery, can largely be
ignored by almost all users. Others (even among the most physical ones, such as indexing)
are presented to application programmers in abstracted ways.

The primary functionalities of dbms’s are as follows:

Secondary storage management: The goal of dbms’s is the management of large amounts
of shared data. By large we mean that the data is too big to fit in main memory. Thus an
essential task of these systems is the management of secondary storage, which involves
an array of techniques such as indexing, clustering, and resource allocation.

Persistence: Data should be persistent (i.e., it should survive the termination of a particular
database application so that it may be reused later). This is a clear divergence from
standard programming, in which a data structure must be coded in a file to live beyond
the execution of an application. Persistent programming languages (e.g., persistent
C++) are now emerging to overcome this limitation of programming languages.



6 Database Systems

Concurrency control: Data is shared. The system must support simultaneous access to
shared information in a harmonious environment that controls access conflicts and
presents a coherent database state to each user. This has led to important notions such
as transaction and serializability and to techniques such as two-phase locking that
ensure serializability.

Data protection: The database is an invaluable source of information that must be protected
against human and application program errors, computer failures, and human mis-
use. Integrity checking mechanisms focus on preventing inconsistencies in the stored
data resulting, for example, from faulty update requests. Database recovery and back-
up protocols guard against hardware failures, primarily by maintaining snapshots of
previous database states and logs of transactions in progress. Finally, security control
mechanisms prevent classes of users from accessing and/or changing sensitive infor-
mation.

Human-machine interface: This involves a wide variety of features, generally revolving
around the logical representation of data. Most concretely, this encompasses DDLs
and DMLs, including both those having a traditional linear format and the emerging
visual interfaces incorporated in so-called fourth-generation languages. Graphically
based tools for database installation and design are popular.

Distribution: In many applications, information resides in distinct locations. Even within
a local enterprise, it is common to find interrelated information spread across several
databases, either for historical reasons or to keep each database within manageable
size. These databases may be supported by different systems (interoperability) and
based on distinct models (heterogeneity). The task of providing transparent access to
multiple systems is a major research topic of the 1990s.

Compilation and optimization: A major task of database systems is the translation of the
requests against the external and logical levels into executable programs. This usually
involves one or more compilation steps and intensive optimization so that performance
is not degraded by the convenience of using more friendly interfaces.

Some of these features concern primarily the physical data level: concurrency control,
recovery, and secondary storage management. Others, such as optimization, are spread
across the three levels.

Database theory and more generally, database models have focused primarily on
the description of data and on querying facilities. The support for designing application
software, which often constitutes a large component of databases in the field, has gen-
erally been overlooked by the database research community. In relational systems appli-
cations can be written in C and extended with embedded SQL (the standard relational
query language) commands for accessing the database. Unfortunately there is a signif-
icant distance between the paradigms of C and SQL. The same can be said to a cer-
tain extent about fourth-generation languages. Modern approaches to improving appli-
cation programmer productivity, such as object-oriented or active databases, are being
investigated.



1.4 Past and Future 7

1.3 Complexity and Diversity

In addition to supporting diverse functionalities, the field of databases must address a
broad variety of uses, styles, and physical platforms. Examples of this variety include the
following:

Applications: Financial, personnel, inventory, sales, engineering design, manufacturing
control, personal information, etc.

Users: Application programmers and software, customer service representatives, secre-
taries, database administrators (dba’s), computer gurus, other databases, expert sys-
tems, etc.

Access modes: Linear and graphical data manipulation languages, special purpose graphi-
cal interfaces, data entry, report generation, etc.

Logical models: The most prominent of these are the network, hierarchical, relational,
and object-oriented models; and there are variations in each model as implemented
by various vendors.

Platforms: Variations in host programming languages, computing hardware and operating
systems, secondary storage devices (including conventional disks, optical disks, tape),
networks, etc.

Both the quality and quantity of variety compounds the complexity of modern dbms’s,
which attempt to support as much diversity as possible.

Another factor contributing to the complexity of database systems is their longevity.
Although some databases are used by a single person or a handful of users for a year or
less, many organizations are using databases implemented over a decade ago. Over the
years, layers of application software with intricate interdependencies have been developed
for these “legacy” systems. It is difficult to modernize or replace these databases because
of the tremendous volume of application software that uses them on a routine basis.

1.4 Past and Future

After the advent of the three-level architecture, the field of databases has become increas-
ingly abstract, moving away from physical storage devices toward human models of in-
formation organization. Early dbms’s were based on the network and hierarchical models.
Both provide some logical organization of data (in graphs and trees), but these representa-
tions closely mirror the physical storage of the data. Furthermore, the DMLs for these are
primitive because they focus primarily on navigation through the physically stored data.

In the 1970s, Codd’s relational model revolutionized the field. In this model, humans
view the data as organized in relations (tables), and more “declarative” languages are pro-
vided for data access. Indexes and other mechanisms for maintaining the interconnection
between data are largely hidden from users. The approach became increasingly accepted
as implementation and optimization techniques could provide reasonable response times in
spite of the distance between logical and physical data organization. The relational model
also provided the initial basis for the development of a mathematical investigation of data-
bases, largely because it bridges the gap between data modeling and mathematical logic.



8 Database Systems

Historically dbms’s were biased toward business applications, and the relational model
best fitted the needs. However, the requirements for the management of large, shared
amounts of data were also felt in a variety of fields, such as computer-aided design and
expert systems. These new applications require more in terms of structures (more complex
than relations), control (more dynamic environments), and intelligence (incorporation of
knowledge). They have generated research and developments at the border of other fields.
Perhaps the most important developments are the following:

Object-oriented databases: These have come from the merging of database technology,
object-oriented languages (e.g., C++), and artificial intelligence (via semantic models).
In addition to providing richer logical data structures, they permit the incorporation of
behavioral information into the database schema. This leads to better interfaces and a
more modular perspective on application software; and, in particular, it improves the
programmer’s productivity.

Deductive and active databases: These originated from the fusion of database technology
and, respectively, logic programming (e.g., Prolog) and production-rule systems (e.g.,
OPS5). The hope is to provide mechanisms that support an abstract view of some
aspects of information processing analogous to the abstract view of data provided by
logical data models. This processing is generally represented in the form of rules and
separated from the control mechanism used for applying the rules.

These two directions are catalysts for significant new developments in the database field.

1.5 Ties with This Book

Over the past two decades, database theory has pursued primarily two directions. The
principal one, which is the focus of this book, concerns those topics that can meaningfully
be discussed within the logical and external layers. The other, which has a different flavor
and is not discussed in this book, is the elegant theory of concurrency control.

The majority of this book is devoted to the study of the relational model. In particular,
relational query languages and language primitives such as recursion are studied in depth.
The theory of dependencies, which provides the formal foundation of integrity constraints,
is also covered. In the last part of the book, we consider more recent topics whose theory is
generally less well developed, including object-oriented databases and behavioral aspects
of databases.

By its nature, theoretical investigation requires the careful articulation of all assump-
tions. This leads to a focus on abstract, simplified models of much more complex practical
situations. For example, one focus in the early part of this book is on conjunctive queries.
These form the core of the select-from-where clause of the standard language in database
systems, SQL, and are perhaps the most important class of queries from a practical stand-
point. However, the conjunctive queries ignore important practical components of SQL,
such as arithmetic operations.

Speaking more generally, database theory has focused rather narrowly on specific
areas that are amenable to theoretical investigation. Considerable effort has been directed
toward the expressive power and complexity of both query languages and dependencies, in
which close ties with mathematical logic and complexity theory could be exploited. On the



Bibliographic Notes 9

other hand, little theory has emerged in connection with physical query optimization, in
which it is much more difficult to isolate a small handful of crucial features upon which a
meaningful theoretical investigation can be based. Other fundamental topics are only now
receiving attention in database theory (e.g., the behavioral aspects of databases).

Theoretical research in computer science is driven both by the practical phenomena
that it is modeling and by aesthetic and mathematical rigor. Although practical motiva-
tions are touched on, this text dwells primarily on the mathematical view of databases and
presents many concepts and techniques that have not yet found their place in practical sys-
tems. For instance, in connection with query optimization, little is said about the heuristics
that play such an important role in current database systems. However, the homomorphism
theorem for conjunctive queries is presented in detail; this elegant result highlights the es-
sential nature of conjunctive queries. The text also provides a framework for analyzing a
broad range of abstract query languages, many of which are either motivated by, or have
influenced, the development of practical languages.

As we shall see, the data independence principle has fundamental consequences for
database theory. Indeed, much of the specificity of database theory, and particularly of the
theory of query languages, is due to this principle.

With respect to the larger field of database systems, we hope this book will serve a dual
purpose: (1) to explain to database system practitioners some of the underlying principles
and characteristics of the systems they use or build, and (2) to arouse the curiosity of
theoreticians reading this book to learn how database systems are actually created.

Bibliographic Notes

There are many books on database systems, including [Dat86, EN89, KS91, Sto88, Ull88,
Ull89b, DA83, Vos91]. A (now old) bibliography on databases is given in [Kam81]. A
good introduction to the field may be found in [KS91], whereas [Ull88, Ull89b] provides
a more in-depth presentation.

The relational model is introduced in [Cod70]. The first text on the logical level of
database theory is [Mai83]. More recent texts on the subject include [PBGG89], which
focuses on aspects of relational database theory; [Tha91], which covers portions of de-
pendency theory; and [Ull88, Ull89b], which covers both practical and theoretical aspects
of the field. The reader is also referred to the excellent survey of relational database the-
ory in [Kan88], which forms a chapter of the Handbook of Theoretical Computer Science
[Lee91].

Database concurrency control is presented in [Pap86, BHG87]. Deductive databases
are covered in [Bid91a, CGT90]. Collections of papers on this topic can be found in
[Min88a]. Collections of papers on object-oriented databases are in [BDK92, KL89,
ZM90]. Surveys on database topics include query optimization [JK84a, Gra93], deductive
databases [GMN84, Min88b, BR88a], semantic database models [HK87, PM88], database
programming languages [AB87a], aspects of heterogeneous databases [BLN86, SL90],
and active databases [HW92, Sto92]. A forthcoming book on active database systems is
[DW94].

http://portal.acm.org/citation.cfm?id=362685

	The Main Principles
	Functionalities
	Complexity and Diversity
	Past and Future
	Ties with This Book
	Bibliographic Notes

